Modular Forms and Weierstrass Mock Modular Forms

被引:2
|
作者
Clemm, Amanda [1 ]
机构
[1] Emory Univ, Dept Math, Atlanta, GA 30322 USA
来源
MATHEMATICS | 2016年 / 4卷 / 01期
关键词
weierstrass mock modular forms; modular forms; eta-quotients;
D O I
10.3390/math4010005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Alfes, Griffin, Ono, and Rolen have shown that the harmonic Maass forms arising from Weierstrass zeta-functions associated to modular elliptic curves "encode" the vanishing and nonvanishing for central values and derivatives of twisted Hasse-Weil L-functions for elliptic curves. Previously, Martin and Ono proved that there are exactly five weight 2 newforms with complex multiplication that are eta-quotients. In this paper, we construct a canonical harmonic Maass form for these five curves with complex multiplication. The holomorphic part of this harmonic Maass form arises from the Weierstrass zeta-function and is referred to as the Weierstrass mock modular form. We prove that the Weierstrass mock modular form for these five curves is itself an eta-quotient or a twist of one. Using this construction, we also obtain p-adic formulas for the corresponding weight 2 newform using Atkin's U-operator.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On Jacobi-Weierstrass mock modular forms
    Alfes, Claudia
    Funke, Jens
    Mertens, Michael H.
    Rosu, Eugenia
    ADVANCES IN MATHEMATICS, 2025, 465
  • [2] Perspectives on mock modular forms
    Folsom, Amanda
    JOURNAL OF NUMBER THEORY, 2017, 176 : 500 - 540
  • [3] On Weierstrass mock modular forms and a dimension formula for certain vertex operator algebras
    Lea Beneish
    Michael H. Mertens
    Mathematische Zeitschrift, 2021, 297 : 59 - 80
  • [4] On Weierstrass mock modular forms and a dimension formula for certain vertex operator algebras
    Beneish, Lea
    Mertens, Michael H.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 59 - 80
  • [5] Secord-order cusp forms and mixed mock modular forms
    Bringmann, Kathrin
    Kane, Ben
    RAMANUJAN JOURNAL, 2013, 31 (1-2) : 147 - 161
  • [6] Secord-order cusp forms and mixed mock modular forms
    Kathrin Bringmann
    Ben Kane
    The Ramanujan Journal, 2013, 31 : 147 - 161
  • [7] ARITHMETIC PROPERTIES OF CERTAIN LEVEL ONE MOCK MODULAR FORMS
    Boylan, Matthew
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (01) : 185 - 202
  • [8] Extending a catalog of mock and quantum modular forms to an infinite class
    Allison Arnold-Roksandich
    Brian Diaz
    Erin Ellefsen
    Holly Swisher
    Research in Number Theory, 2020, 6
  • [9] Extending a catalog of mock and quantum modular forms to an infinite class
    Arnold-Roksandich, Allison
    Diaz, Brian
    Ellefsen, Erin
    Swisher, Holly
    RESEARCH IN NUMBER THEORY, 2020, 6 (02)
  • [10] Construction of vector-valued modular integrals and vector-valued mock modular forms
    Gimenez, Jose
    Muhlenbruch, Tobias
    Raji, Wissam
    RAMANUJAN JOURNAL, 2016, 41 (1-3) : 51 - 114