Hydrogen purification performance of a nanoporous hexagonal boron nitride membrane: molecular dynamics and first-principle simulations

被引:24
作者
Ganji, Masoud Darvish [1 ]
Dodangeh, Razieh [1 ]
机构
[1] Islamic Azad Univ IAUPS, Fac Pharmaceut Chem, Pharmaceut Sci Branch, Dept Nanochem, Tehran, Iran
关键词
GENERALIZED GRADIENT APPROXIMATION; POROUS GRAPHENE; WATER DESALINATION; GAS SEPARATION; CO2/N-2; SEPARATION; NANOSHEETS; FABRICATION; FIELD; BN;
D O I
10.1039/c7cp01665d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Membranes have attracted much attention for the efficient separation of gas mixtures, due to their specific structural and unique properties. In this work, density functional theory (DFT) and molecular dynamic (MD) simulations have been employed to evaluate the performance of nanoporous hexagonal boron nitride (h-BN) monolayers for hydrogen purification. Various porous membranes were designed, and full structural relaxation was carried out by using DFT calculations and then MD simulations to investigate the H-2 purification performance of the nanoporous h-BN membranes. It was found that the selectivity for H-2 gas over N-2 gas was highly sensitive to the type and width of the pores. The h-BN membrane containing pores with short and long sides both of about 3 angstrom(pore 1B-3N) demonstrated optimal selectivity for H-2 molecules, while the permeability of the pore 5B-5N + 4H membrane (short side of about 4.4 angstrom) was much higher than that of other counterparts. Furthermore, DFT calculations were performed to validate the MD simulation observations as well as to explain the selectivity performance of the most desirable pore membrane. We demonstrated that the 1B-3N pore is a far superior membrane to other counterparts and exhibits an excellent potential for applications in hydrogen purification, clean energy combustion, and the design of novel membranes for gas separation.
引用
收藏
页码:12032 / 12044
页数:13
相关论文
共 73 条
  • [1] [Anonymous], 2007, THESIS
  • [2] The SIESTA method;: developments and applicability
    Artacho, Emilio
    Anglada, E.
    Dieguez, O.
    Gale, J. D.
    Garcia, A.
    Junquera, J.
    Martin, R. M.
    Ordejon, P.
    Pruneda, J. M.
    Sanchez-Portal, D.
    Soler, J. M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
  • [3] Baker R. W., 2004, MEMBRANE TECHNOLOGY, P275
  • [4] Future directions of membrane gas separation technology
    Baker, RW
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) : 1393 - 1411
  • [5] Membrane Gas Separation: A Review/State of the Art
    Bernardo, P.
    Drioli, E.
    Golemme, G.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (10) : 4638 - 4663
  • [6] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [7] Water Desalination across Nanoporous Graphene
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2012, 12 (07) : 3602 - 3608
  • [8] Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
    Coleman, Jonathan N.
    Lotya, Mustafa
    O'Neill, Arlene
    Bergin, Shane D.
    King, Paul J.
    Khan, Umar
    Young, Karen
    Gaucher, Alexandre
    De, Sukanta
    Smith, Ronan J.
    Shvets, Igor V.
    Arora, Sunil K.
    Stanton, George
    Kim, Hye-Young
    Lee, Kangho
    Kim, Gyu Tae
    Duesberg, Georg S.
    Hallam, Toby
    Boland, John J.
    Wang, Jing Jing
    Donegan, John F.
    Grunlan, Jaime C.
    Moriarty, Gregory
    Shmeliov, Aleksey
    Nicholls, Rebecca J.
    Perkins, James M.
    Grieveson, Eleanor M.
    Theuwissen, Koenraad
    McComb, David W.
    Nellist, Peter D.
    Nicolosi, Valeria
    [J]. SCIENCE, 2011, 331 (6017) : 568 - 571
  • [9] Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane
    Du, Huailiang
    Li, Jingyuan
    Zhang, Jing
    Su, Gang
    Li, Xiaoyi
    Zhao, Yuliang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (47) : 23261 - 23266
  • [10] DNA Base Detection Using a Single-Layer MoS2
    Farimani, Amir Barati
    Min, Kyoungmin
    Aluru, Narayana R.
    [J]. ACS NANO, 2014, 8 (08) : 7914 - 7922