Solar Driven CO2 Hydrogenation on Ti-Doped Silicon Nanocages

被引:9
作者
Pei, Wei [1 ]
Zhou, Si [1 ]
Bai, Yizhen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon nanoclusters; Metal doping; CO2; photo-conversion; Si; p orbital center; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; METHANOL SYNTHESIS; CLUSTERS; ELECTROREDUCTION; CONVERSION; CATALYSTS; MO; SI;
D O I
10.1007/s10876-019-01743-0
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Hydrogenation of carbon dioxide (CO2) to produce fuels and value-added chemicals is a critical reaction to solve both energy and environment issues. Developing efficient catalysts composed of earth-abundant, cost-effective and eco-friendly elements is highly desired but remains challenging. Here, we exploit titanium-doped silicon cage nanoclusters (TiSin, n = 12-16) for CO2 hydrogenation. Our first-principles calculations show that the activity and product selectivity of TiSin clusters exhibit remarkable size-dependences, and they can also absorb a large portion of sun light from visible to ultraviolet regimes to drive the catalysis. Their activity origins from the unsaturated electronic states on the silicon cage, mediated by the strong covalent bonding between Si and Ti atoms. More importantly, we establish a relationship between binding capability of TiSin clusters and the p orbital center of silicon cage, which provide general guidelines for atomically precise design of not only silicon-based clusters but also other non-metal catalysts for highly active and selective CO2 conversion.
引用
收藏
页码:627 / 635
页数:9
相关论文
共 62 条
[1]   Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters [J].
Austin, Natalie ;
Zhao, Shuo ;
McKone, James R. ;
Jin, Rongchao ;
Mpourmpakis, Giannis .
CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (15) :3795-3805
[2]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[3]   A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane [J].
Bian, Zhoufeng ;
Das, Sonali ;
Wai, Ming Hui ;
Hongmanorom, Plaifa ;
Kawi, Sibudjing .
CHEMPHYSCHEM, 2017, 18 (22) :3117-3134
[4]   Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction [J].
Billo, Tadesse ;
Fu, Fang-Yu ;
Raghunath, Putikam ;
Shown, Indrajit ;
Chen, Wei-Fu ;
Lien, Hsiang-Ting ;
Shen, Tzu-Hsien ;
Lee, Jyh-Fu ;
Chan, Ting-Shan ;
Huang, Kuo-You ;
Wu, Chih-I ;
Lin, M. C. ;
Hwang, Jih-Shang ;
Lee, Chih-Hao ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
SMALL, 2018, 14 (02)
[6]   Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper-Gold Alloys [J].
Christophe, J. ;
Doneux, Th. ;
Buess-Herman, C. .
ELECTROCATALYSIS, 2012, 3 (02) :139-146
[7]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[8]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[9]  
Hammer B, 2000, ADV CATAL, V45, P71
[10]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904