Design of magnetic configurations for the linear plasma device LEAD

被引:15
作者
Liu, H. [1 ,2 ]
Yu, Y. [1 ]
Wang, Z. H. [2 ]
Xu, M. [2 ]
Che, T. [2 ]
Zheng, P. F. [2 ]
Gong, S. B. [1 ,2 ]
Nie, L. [2 ]
Long, T. [2 ]
Ke, R. [2 ]
Sun, A. P. [2 ]
Ye, M. Y. [1 ]
机构
[1] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[2] Southwest Inst Phys, Chengdu 610025, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic field simulation; Linear plasma device (LPD); Magnetic shielding; SURFACE;
D O I
10.1016/j.fusengdes.2019.04.060
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new linear plasma device LEAD (Linear experimental advanced device) has been built in Southwest Institute of Physics (SWIP) in China. One of the most notable features of LEAD is the highly flexible and customizable magnetic field configurations, such as highly-uniform field, convergent field, divergent field and cusp field. In this article, we present the design of the magnetic configurations, taking the topology of the magnets, the three-stage vacuum chamber and the magnetic requirements of plasma sources into account. The interplay between the magnetic shielding box of the matching network and the main magnetic field inside the vacuum chamber is evaluated to ensure both a tolerable influence on main magnetic field and an effective magnetic shielding for the automatic impedance matching box in helicon source.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 18 条
[1]   Magnetic reconnection in plasmas [J].
Biskamp, D .
ASTROPHYSICS AND SPACE SCIENCE, 1996, 242 (1-2) :165-208
[2]   Magnum-psi, a new linear plasma generator for plasma-surface interaction studies in ITER relevant conditions [J].
de Groot, B ;
Ahmad, Z ;
Dahiya, RP ;
Engeln, R ;
Goedjeer, WJ ;
Cardozo, NJL ;
Veremiyenko, V .
FUSION ENGINEERING AND DESIGN, 2003, 66-68 :413-417
[3]   ELM simulation experiments on Pilot-PSI using simultaneous high flux plasma and transient heat/particle source [J].
De Temmerman, G. ;
Zielinski, J. J. ;
van Diepen, S. ;
Marot, L. ;
Price, M. .
NUCLEAR FUSION, 2011, 51 (07)
[4]   DESIGN, CONSTRUCTION, AND PROPERTIES OF THE LARGE PLASMA RESEARCH DEVICE - THE LAPD AT UCLA [J].
GEKELMAN, W ;
PFISTER, H ;
LUCKY, Z ;
BAMBER, J ;
LENEMAN, D ;
MAGGS, J .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1991, 62 (12) :2875-2883
[5]   A NEW PLASMA-SURFACE INTERACTIONS RESEARCH FACILITY - PISCES-B AND 1ST MATERIALS EROSION EXPERIMENTS ON BULK-BORONIZED GRAPHITE [J].
HIROOKA, Y ;
CONN, RW ;
SKETCHLEY, T ;
LEUNG, WK ;
CHEVALIER, G ;
DOERNER, R ;
ELVERUM, J ;
GOEBEL, DM ;
GUNNER, G ;
KHANDAGLE, M ;
LABOMBARD, B ;
LEHMER, R ;
LUONG, P ;
RA, Y ;
SCHMITZ, L ;
TYNAN, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (03) :1790-1797
[6]   A Concept of Cross-Ferroic Plasma Turbulence [J].
Inagaki, S. ;
Kobayashi, T. ;
Kosuga, Y. ;
Itoh, S. -I. ;
Mitsuzono, T. ;
Nagashima, Y. ;
Arakawa, H. ;
Yamada, T. ;
Miwa, Y. ;
Kasuya, N. ;
Sasaki, M. ;
Lesur, M. ;
Fujisawa, A. ;
Itoh, K. .
SCIENTIFIC REPORTS, 2016, 6
[7]  
Kennedy M. W., 2011, COMSOL US C 26 28 OC, P1
[8]   LINEAR PLASMA DEVICE PSI-2 FOR PLASMA-MATERIAL INTERACTION STUDIES [J].
Kreter, A. ;
Brandt, C. ;
Huber, A. ;
Kraus, S. ;
Moeller, S. ;
Reinhart, M. ;
Schweer, B. ;
Sergienko, G. ;
Unterberg, B. .
FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (01) :8-14
[9]   Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J].
Nishijima, D ;
Ye, MY ;
Ohno, N ;
Takamura, S .
JOURNAL OF NUCLEAR MATERIALS, 2004, 329 :1029-1033
[10]   Development of a compact divertor plasma simulator for plasma-wall interaction studies on neutron-irradiated materials [J].
Ohno N. ;
Kuwabara T. ;
Takagi M. ;
Nishimura R. ;
Yajima M. ;
Sagara A. ;
Toyama T. ;
Suzuki K. ;
Kurishita H. ;
Shikama T. ;
Hatano Y. ;
Yoshida N. .
Plasma and Fusion Research, 2017, 12