Deep Bilateral Learning for Stereo Image Super-Resolution

被引:32
|
作者
Xu, Qingyu [1 ]
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Sheng, Weidong [1 ]
Deng, Xinpu [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Superresolution; Training; Convolution; Kernel; Task analysis; Spatial resolution; Bilateral filter; recursive; stereo image; super-resolution;
D O I
10.1109/LSP.2021.3066125
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bilateral filter has demonstrated its effectiveness in many traditional methods for image restoration tasks. In this letter, we incorporate the idea of bilateral grid processing in a CNN framework and propose a bilateral stereo super-resolution network (BSSRnet). Specifically, we use a parallax-attention module to incorporate information from left and right views to learn content-aware bilateral filters. Then, these bilateral filters are used to recover missing details at different spatial locations while preserving stereo consistency. Our network is fully differentiable and is robust to both content and disparity variations. Comparative results show that our BSSRnet achieves state-of-the-art performance on the Flickr1024, Middlebury, KITTI 2012 and KITTI 2015 datasets. Source code is available at.
引用
收藏
页码:613 / 617
页数:5
相关论文
共 50 条
  • [1] Cross View Capture for Stereo Image Super-Resolution
    Zhu, Xiangyuan
    Guo, Kehua
    Fang, Hui
    Chen, Liang
    Ren, Sheng
    Hu, Bin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3074 - 3086
  • [2] A Stereo Attention Module for Stereo Image Super-Resolution
    Ying, Xinyi
    Wang, Yingqian
    Wang, Longguang
    Sheng, Weidong
    An, Wei
    Guo, Yulan
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 496 - 500
  • [3] Deep Convolution Modulation for Image Super-Resolution
    Huang, Yuanfei
    Li, Jie
    Hu, Yanting
    Huang, Hua
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3647 - 3662
  • [4] A Disparity Feature Alignment Module for Stereo Image Super-Resolution
    Dan, Jiawang
    Qu, Zhaowei
    Wang, Xiaoru
    Gu, Jiahang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1285 - 1289
  • [5] Steformer: Efficient Stereo Image Super-Resolution With Transformer
    Lin, Jianxin
    Yin, Lianying
    Wang, Yijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8396 - 8407
  • [6] Bilateral Upsampling Network for Single Image Super-Resolution With Arbitrary Scaling Factors
    Zhang, Menglei
    Ling, Qiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4395 - 4408
  • [7] Learning Deep Resonant Prior for Hyperspectral Image Super-Resolution
    Gong, Zhaori
    Wang, Nannan
    Cheng, De
    Jiang, Xinrui
    Xin, Jingwei
    Yang, Xi
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Deep Learning for Simultaneous Seismic Image Super-Resolution and Denoising
    Li, Jintao
    Wu, Xinming
    Hu, Zhanxuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Cross Parallax Attention Network for Stereo Image Super-Resolution
    Chen, Canqiang
    Qing, Chunmei
    Xu, Xiangmin
    Dickinson, Patrick
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 202 - 216
  • [10] DMSN: A Deep Multistream Network for Hyperspectral Image Super-Resolution
    Li, Sheng
    Su, Yuanchao
    Sun, Xu
    Li, Jiaxin
    Li, Boyan
    Gao, Jianjian
    Feng, Xiaohua
    Jiang, Mengying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22