Fermionic coherent states for pseudo-Hermitian two-level systems

被引:29
作者
Cherbal, O.
Drir, M.
Maamache, M.
Trifonov, D. A.
机构
[1] USTHB, Theoret Phys Lab, Fac Phys, Algiers 16111, Algeria
[2] Setif Univ, Dept Phys, Lab Phys Quant & Syst Dynam, Setif 19000, Algeria
[3] Inst Nucl Res, Sofia 1784, Bulgaria
关键词
D O I
10.1088/1751-8113/40/8/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce creation and annihilation operators of pseudo-Hermitian fermions for two-level systems described by a pseudo-Hermitian Hamiltonian with real eigenvalues. This allows the generalization of the fermionic coherent states approach to such systems. Pseudo-fermionic coherent states are constructed as eigenstates of two pseudo-fermion annihilation operators. These coherent states form a bi-normal and bi-overcomplete system, and their evolution governed by the pseudo-Hermitian Hamiltonian is temporally stable. In terms of the introduced pseudo-fermion operators, the two-level system Hamiltonian takes a factorized form similar to that of a harmonic oscillator.
引用
收藏
页码:1835 / 1844
页数:10
相关论文
共 46 条
[1]   ADIABATIC HOLONOMY AND EVOLUTION OF FERMIONIC COHERENT STATE [J].
ABE, S .
PHYSICAL REVIEW D, 1989, 39 (08) :2327-2331
[2]   C-, PT- and CPT-invariance of pseudo-Hermitian Hamiltonians [J].
Ahmed, Z .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (37) :9711-9719
[3]   COHERENT STATES AND THEIR GENERALIZATIONS - A MATHEMATICAL OVERVIEW [J].
ALI, ST ;
ANTOINE, JP ;
GAZEAU, JP ;
MUELLER, UA .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (07) :1013-1104
[4]   Phase-equivalent complex potentials [J].
Baye, D ;
Levai, G ;
Sparenberg, JM .
NUCLEAR PHYSICS A, 1996, 599 (3-4) :435-456
[5]   Rabi oscillations in a two-level atomic system with a pseudo-Hermitian Hamiltonian [J].
Ben-Aryeh, Y ;
Mann, A ;
Yaakov, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (50) :12059-12066
[6]   Four easy pieces [J].
Bender, Carl M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32) :9993-10012
[7]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[8]   Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Meisinger, PN ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1973-1983
[9]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[10]   Generalized PT symmetry and real spectra [J].
Bender, CM ;
Berry, MV ;
Mandilara, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31) :L467-L471