A Berry-Esseen bound for U-statistics in the non-IID case

被引:10
作者
Alberink, IB [1 ]
机构
[1] Univ Nijmegen, Dept Math, NL-6500 GL Nijmegen, Netherlands
关键词
U-statistics; Berry Esseen bound; non-i.i.d sampling; rate of convergence; Wilcoxon's rank-sum test;
D O I
10.1023/A:1007889323347
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1 ,..., X-n be independent, not necessarily identically distributed random variables. An optimal Berry Esseen bound is derived for U-statistics of order 2, that is, statistics of the form T = Sigma(1 less than or equal to i<j less than or equal to n) g(ij) (X-i, X-j), where the g(ij) are measurable functions such that if E \g(j)(X-i, X-j)\ < infinity. An application is given concerning Wilcoxon's rank-sum test.
引用
收藏
页码:519 / 533
页数:15
相关论文
共 8 条
[1]  
[Anonymous], STATISTICAL DECISION
[2]  
[Anonymous], MATH STAT INTRO
[3]  
Bentkus V, 1997, ANN STAT, V25, P851
[4]   A Berry-Esseen bound for student's statistic in the non-iid case [J].
Bentkus, V ;
Bloznelis, M ;
Gotze, F .
JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (03) :765-796
[5]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[6]   A BERRY-ESSEEN BOUND FOR FUNCTIONS OF INDEPENDENT RANDOM-VARIABLES [J].
FRIEDRICH, KO .
ANNALS OF STATISTICS, 1989, 17 (01) :170-183
[7]  
Gibbons J., 1992, Nonparametric Statistical Inference
[8]  
VANZWET WR, 1984, Z WAHRSCHEINLICHKEIT, V66, P425