Lentiviral vectors encoding for identifiable marker genes controlled by lineage-specific promoters can be used to track differentiation of bone marrow progenitors into endothelial cells and/or smooth muscle cells. Human VE-Cadherin and Smoothelin-B promoters were cloned into a self-inactivating lentiviral vector (HR-VECad and HR-SMTHB) and used to drive expression of green fluorescent protein (eGFP). These constructs demonstrated specific promoter activity in mature endothelial and smooth muscle cells respectively in vitro. Lin(-) bone marrow progenitor cells (Lin(-) BMCs) in culture were used to test vector ability to track vascular differentiation. HR-VECad transduced Lin(-) BMCs were plated on collagen-coated slides and grown in endothelial media, while HR-SMTHB transduced Lin(-) BMCs were cultured on fibronectin-coated slides and grown in smooth muscle media. For in vivo differentiation assessment, lentiviral transduced Lin(-) BMCs resuspended in Matrigel were injected subcutaneously into C57BL/6J mice. Explants were evaluated for eGFP expression. Lin(-) BMCs grown in endothelial differentiation media produced groups of polygonal endothelial-like cells by days 16-21. When transduced with HR-VEC advector, these expressed eGFP in distinct cells within the colony by days 18-21, and coexpressed VE-Cadherin and eNOS. Lin(-) BMCs grown in smooth muscle differentiation media produced spindle-shaped cells between days 10-14 in culture. When transduced with the HR-SMTHB vector, these cells showed eGFP expression at similar to 12 days, which increased over time and coexpressed alpha SMA, calponin and myosin heavy chain. Within Matrigel plugs containing HR-VECad transduced cells, eGFP(+) constituted 0.4 +/- 0.2% of total cells. In contrast, within Matrigel plugs containing HR-SMTHB transduced cells, eGFP(+) cells constituted 0.2 +/- 0.1% of total cells. These data demonstrate the feasibility of selectively marking BMC populations for cell fate determination. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.