Dehydrogenation of Formic Acid in Liquid Phase over Pd Nanoparticles Supported on Reduced Graphene Oxide Sheets

被引:32
|
作者
Kadhem, Assel A. [1 ]
Al-Nayili, Abbas [1 ]
机构
[1] Univ Al Qadisiyah, Chem Dept, Coll Educ, Al Diwaniyah, Iraq
关键词
Hydrogen; Formic acid; Pd; reduced graphene oxide; Heterogeneous catalysts; Nanoparticles; HYDROGEN GENERATION; EFFICIENT CATALYST; BASIC RESIN; DECOMPOSITION; FORMATE;
D O I
10.1007/s10563-021-09332-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reduced graphene oxide sheets (rGO) were used in this study to support Pd nanoparticles through soil-immobilization and impregnation methods. The catalysts were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. These nanocatalysts were used as catalysts for the dehydrogenation of formic acid in liquid phase. The results showed that the Pd/rGO samples synthesised via the sol-immobilisation technique exhibited better catalytic activity (TOF = 910 h(-1)) than those synthesised by the impregnation technique (TOF = 506 h(-1)) because of the smaller size of Pd particles and higher Pd exposure of the catalysts synthesised by the first technique. The experimental outcomes showed that the graphene sheets provided remarkable support for Pd nanoparticles.
引用
收藏
页码:324 / 333
页数:10
相关论文
共 50 条
  • [21] Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions
    Ruiz-Lopez, Estela
    Ribota Pelaez, Maria
    Blasco Ruz, Maria
    Dominguez Leal, Maria Isabel
    Martinez Tejada, Marcela
    Ivanova, Svetlana
    Centeno, Miguel angel
    MATERIALS, 2023, 16 (02)
  • [22] Hydrogen production from formic acid dehydrogenation over a Pd supported on N-doped mesoporous carbon catalyst: A role of nitrogen dopant
    Kim, Yongwoo
    Kim, Do Heui
    APPLIED CATALYSIS A-GENERAL, 2020, 608
  • [23] Amine-functionalized carbon nanotubes supported NiAuPd nanoparticles as an efficient in-situ prepared catalyst for formic acid dehydrogenation
    Zhang, Shi-Lei
    Li, Si-Jia
    Wang, Jia-Yun
    Shang, He-Nan
    Bai, Ya-Xuan
    Liang, Jin-Sheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) : 34727 - 34736
  • [24] Bimetallic Pd–Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation
    SK Safdar Hossain
    Arabian Journal for Science and Engineering, 2021, 46 : 6543 - 6556
  • [25] Continuous hydrogen production from liquid-phase formic acid dehydrogenation over Pd/AC catalysts: A kinetic study
    Martin, Celia
    Quintanilla, Asuncion
    Casas, Jose A.
    CATALYSIS TODAY, 2024, 439
  • [26] Structure-sensitivity of formic acid dehydrogenation reaction over additive-free Pd NPs supported on activated carbon
    Santos, Jose Luis
    Megias-Sayago, Cristina
    Ivanova, Svetlana
    Centeno, Miguel Angel
    Odriozola, Jose Antonio
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [27] Electronically modified Pd catalysts supported on N-doped carbon for the dehydrogenation of formic acid
    Jeon, Mina
    Han, Da Jung
    Lee, Kug-Seung
    Choi, Sun Hee
    Han, Jonghee
    Nam, Suk Woo
    Jang, Seong Chul
    Park, Hyun S.
    Yoon, Chang Won
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (34) : 15453 - 15461
  • [28] Bis-imidazolium Pd(0) based supported catalyst for the selective dehydrogenation of formic acid
    Holakooei, Parvin
    Valentini, Federica
    Campana, Filippo
    Vaccaro, Luigi
    MOLECULAR CATALYSIS, 2024, 563
  • [29] Electrocatalytic Oxidation of Formic Acid in an Alkaline Solution with Graphene-Oxide-Supported Ag and Pd Alloy Nanoparticles
    Han, Hyoung Soon
    Yun, Mira
    Jeong, Haesang
    Jeon, Seungwon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (08) : 5699 - 5705
  • [30] Palladium Nanoparticles Supported on Titanium-Doped Graphitic Carbon Nitride for Formic Acid Dehydrogenation
    Wu, Yongmei
    Wen, Meicheng
    Navlani-Garcia, Miriam
    Kuwahara, Yasutaka
    Mori, Kohsuke
    Yamashita, Hiromi
    CHEMISTRY-AN ASIAN JOURNAL, 2017, 12 (08) : 860 - 867