Low degree rational spline interpolation

被引:8
|
作者
Oja, P [1 ]
机构
[1] Tartu State Univ, Fac Math, EE-2400 Tartu, Estonia
来源
BIT | 1997年 / 37卷 / 04期
关键词
interpolation; rational spline;
D O I
10.1007/BF02510359
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For a strictly monotone function f on [a, b] we describe the possibility of finding an interpolating rational spline S of the form S(x) = c(0) + c(1)x/(1+d(1)x) on each subinterval of the grid a = x(0) < x(1) < ... < x(n) = b. This leads to a nonlinear system for which we get the local existence and uniqueness of a solution. We prove that \\S-f\\(infinity) = O(h(3)). Numerical test shows good approximation properties of these splines.
引用
收藏
页码:901 / 909
页数:9
相关论文
共 50 条
  • [31] Constrained Interpolation using Rational Cubic Spline with Three Parameters
    Karim, Samsul Ariffin Abdul
    Hasan, Mohammad Khatim
    Hashim, Ishak
    SAINS MALAYSIANA, 2019, 48 (03): : 685 - 695
  • [32] POSITIVITY PRESERVING INTERPOLATION BY USING RATIONAL CUBIC BALL SPLINE
    Karim, Samsul Ariffin Abdul
    JURNAL TEKNOLOGI, 2016, 78 (11): : 141 - 148
  • [33] Constrained interpolation using rational cubic spline with linear denominators
    Department of Applied Mathematics, Shandong University of Technology, Jinan, 250061, China
    不详
    J. Appl. Math. Comp., 1 (203-215):
  • [34] Shape Designing of Engineering Images Using Rational Spline Interpolation
    Sarfraz, Muhammad
    Ishaq, Munaza
    Hussain, Malik Zawwar
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2015, 2015
  • [35] Constrained interpolation using rational Cubic Spline with linear denominators
    Qi Duan
    Gongxue Xu
    Aikui Liu
    Xuefu Wang
    Fuhua Frank Cheng
    Korean Journal of Computational and Applied Mathematics, 1999, 6 (1): : 203 - 215
  • [36] MARKOV-TYPE INEQUALITIES AND THE DEGREE OF CONVEX SPLINE INTERPOLATION
    MYERS, DC
    ROULIER, JA
    JOURNAL OF APPROXIMATION THEORY, 1980, 28 (03) : 267 - 272
  • [37] CARDINAL HERMITE SPLINE INTERPOLATION - CONVERGENCE AS DEGREE TENDS TO INFINITY
    MARSDEN, MJ
    RIEMENSCHNEIDER, SD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 235 (JAN) : 221 - 244
  • [38] Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problems
    Boushabi, M.
    Eddargani, S.
    Ibanez, M. J.
    Lamnii, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 98 - 110
  • [39] MINIMAL DEGREE RATIONAL UNIMODULAR INTERPOLATION ON THE UNIT CIRCLE
    Glader, Christer
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 88 - 106
  • [40] Linear Barycentric Rational Interpolation with Guaranteed Degree of Exactness
    Berrut, Jean-Paul
    APPROXIMATION THEORY XV, 2017, 201 : 1 - 20