Although the arsenal of a healthy immune system includes both circulating antibodies and cellular components such as T cells, the latter seem to be particularly important in tumor immunology. Under normal conditions, the immune system does not react to the body's cells, which may be described as expressing "self" antigens on the cell surface. When a cell becomes cancerous, however, novel antigens are expressed on the cell surface. These novel "tumor" antigens are recognized as foreign by the body's immune system, and the cells that express them are destroyed or incapacitated. Whereas antibodies may react directly with protein antigens, T cells instead recognize peptide antigens presented by class I and class II molecules of the major histocompatibility complex (MHC). All cells normally break down proteins that they have made. The class I antigen-processing pathway has evolved to display peptides produced by this breakdown process as a way to provide information to cytotoxic T cells about what the cell is making. The display of new peptides as a result of infection or transformation can stimulate cytotoxic T cells to kill the cell. In addition, antigen-processing cells such as dendritic cells engulf dead or dying cells and degrade proteins into peptide fragments. These peptides are then displayed by the MHC class II molecules and presented to T helper cells, which augment the activity of the cytotoxic T cells. Cytotoxic T lymphocytes have recently been isolated from human tumors (especially melanoma) and are critical to the development of promising immunotherapeutic agents. As we shall discuss, these cells can recognize antigens that are common to tumors from different patients. The shall also explore how advances in instrumentation and the use of transgenic mice have increased our understanding of tumor-associated peptides to the point where we can begin to strive for a peptide-based therapeutic vaccine. The caveats for such therapy will also be addressed.