Channel-Optimized Quantum Error Correction

被引:20
|
作者
Taghavi, Soraya [1 ,2 ]
Kosut, Robert L. [5 ]
Lidar, Daniel A. [1 ,2 ,3 ,4 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[5] SC Solut, Syst & Control Div, Sunnyvale, CA 94085 USA
基金
美国国家科学基金会;
关键词
Convex optimization; quantum error correction; CODES;
D O I
10.1109/TIT.2009.2039162
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a theory for finding quantum error correction (QEC) procedures which are optimized for given noise channels. Our theory accounts for uncertainties in the noise channel, against which our QEC procedures are robust. We demonstrate, via numerical examples, that our optimized QEC procedures always achieve a higher channel fidelity than the standard error correction method, which is agnostic about the specifics of the channel. This demonstrates the importance of channel characterization before QEC procedures are applied. Our main novel finding is that in the setting of a known noise channel the recovery ancillas are redundant for optimized quantum error correction. We show this using a general rank minimization heuristic and supporting numerical calculations. Therefore, one can further improve the fidelity by utilizing all the available ancillas in the encoding block.
引用
收藏
页码:1461 / 1473
页数:13
相关论文
共 50 条
  • [1] CHANNEL-OPTIMIZED ERROR MITIGATION FOR DISTRIBUTED SPEECH RECOGNITION OVER WIRELESS NETWORKS
    Lee, Cheng-Lung
    Chang, Wen-Whei
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2009, 32 (01) : 45 - 51
  • [2] Robustness-optimized quantum error correction
    Layden, David
    Huang, Louisa Ruixue
    Cappellaro, Paola
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (02):
  • [3] Optimized entanglement-assisted quantum error correction
    Taghavi, Soraya
    Brun, Todd A.
    Lidar, Daniel A.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [4] Channel-Adapted Quantum Error Correction for the Amplitude Damping Channel
    Fletcher, Andrew S.
    Shor, Peter W.
    Win, Moe Z.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) : 5705 - 5718
  • [5] Quantum error correction via convex optimization
    Kosut, Robert L.
    Lidar, Daniel A.
    QUANTUM INFORMATION PROCESSING, 2009, 8 (05) : 443 - 459
  • [6] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640
  • [7] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [8] Non-Uniform Quantizers with SC Polar Based Channel-Optimized Decoders
    Hasan, Alaa A.
    Marsland, Ian D.
    2017 8TH IEEE ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), 2017, : 101 - 104
  • [9] Quantum error correction with bosonic encoding
    Fan, Heng
    CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (28-29): : 4169 - 4172
  • [10] Quantum error correction: an introductory guide
    Roffe, Joschka
    CONTEMPORARY PHYSICS, 2019, 60 (03) : 226 - 245