Channel-Optimized Quantum Error Correction

被引:20
作者
Taghavi, Soraya [1 ,2 ]
Kosut, Robert L. [5 ]
Lidar, Daniel A. [1 ,2 ,3 ,4 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[5] SC Solut, Syst & Control Div, Sunnyvale, CA 94085 USA
基金
美国国家科学基金会;
关键词
Convex optimization; quantum error correction; CODES;
D O I
10.1109/TIT.2009.2039162
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a theory for finding quantum error correction (QEC) procedures which are optimized for given noise channels. Our theory accounts for uncertainties in the noise channel, against which our QEC procedures are robust. We demonstrate, via numerical examples, that our optimized QEC procedures always achieve a higher channel fidelity than the standard error correction method, which is agnostic about the specifics of the channel. This demonstrates the importance of channel characterization before QEC procedures are applied. Our main novel finding is that in the setting of a known noise channel the recovery ancillas are redundant for optimized quantum error correction. We show this using a general rank minimization heuristic and supporting numerical calculations. Therefore, one can further improve the fidelity by utilizing all the available ancillas in the encoding block.
引用
收藏
页码:1461 / 1473
页数:13
相关论文
共 34 条
[1]   Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit [J].
Alicki, Robert ;
Lidar, Daniel A. ;
Zanardi, Paolo .
PHYSICAL REVIEW A, 2006, 73 (05)
[2]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[3]  
[Anonymous], 2004, P IEEE INT S COMPUTE
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[5]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[6]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[7]   Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation [J].
D'Ariano, GM ;
Lo Presti, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (19) :4195-4198
[8]  
FAZEL M, 2002, THESIS STANF U DEP E
[9]  
Fazel M., 2004, P AM CONTR C BOST MA
[10]   QUANTUM-MECHANICAL COMPUTERS [J].
FEYNMAN, RP .
FOUNDATIONS OF PHYSICS, 1986, 16 (06) :507-531