Combinatorial Configurations in the Definition of Antimagic Labelings of Graphs

被引:0
作者
Semeniuta, M. F. [1 ]
机构
[1] Natl Avit Univ, Flight Acad, Kropyvnytskyi, Ukraine
关键词
combinatorial configuration; separating system; magic rectangle set; regular graph; biregular graph; antimagic labeling; (a; d)-distance antimagic labeling; NETS;
D O I
10.1007/s10559-021-00344-y
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We have formalized the definition of graph labeling in terms of combinatorial configurations. We have investigated the connection between edge and vertex (a, d)-distance antimagic labelings with such well-known configurations as separating systems and magic rectangle sets. We have obtained a solution to the problem of construction of indicated labelings for some types of graphs and certain values of a and d.
引用
收藏
页码:196 / 204
页数:9
相关论文
共 25 条
  • [1] Arumugam S, 2012, AUSTRALAS J COMB, V54, P279
  • [2] Nets and groups
    Baer, Reinhold
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 46 (1-3) : 110 - 141
  • [3] Nets and groups. II
    Baer, Reinhold
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1940, 47 (1-3) : 435 - 439
  • [4] BERGE Claude., 1968, Principes de Combinatoire
  • [5] BALANCED MAGIC RECTANGLES
    BIER, T
    ROGERS, DG
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (04) : 285 - 299
  • [6] Centrally symmetric and magic rectangles
    Bier, T
    Kleinschmidt, A
    [J]. DISCRETE MATHEMATICS, 1997, 176 (1-3) : 29 - 42
  • [7] Bokowski J., 1989, COMPUTATIONAL SYNTHE, DOI [10.1007/BFb0089253, DOI 10.1007/BFB0089253]
  • [8] Colbourn C. J., 2007, DISCRETE MATH ITS AP
  • [9] Dickson T. J., 1969, Journal of Combinatorial Theory, Series A, V7, P191, DOI 10.1016/S0021-9800(69)80011-6
  • [10] Graph Approach to Solving Problems of Combinatorial Recognition
    Donets G.A.
    [J]. Donets, G.A. (georgdone@gmail.com), 1600, Springer Science and Business Media, LLC (53): : 857 - 865