Combinatorial Configurations in the Definition of Antimagic Labelings of Graphs

被引:0
作者
Semeniuta, M. F. [1 ]
机构
[1] Natl Avit Univ, Flight Acad, Kropyvnytskyi, Ukraine
关键词
combinatorial configuration; separating system; magic rectangle set; regular graph; biregular graph; antimagic labeling; (a; d)-distance antimagic labeling; NETS;
D O I
10.1007/s10559-021-00344-y
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We have formalized the definition of graph labeling in terms of combinatorial configurations. We have investigated the connection between edge and vertex (a, d)-distance antimagic labelings with such well-known configurations as separating systems and magic rectangle sets. We have obtained a solution to the problem of construction of indicated labelings for some types of graphs and certain values of a and d.
引用
收藏
页码:196 / 204
页数:9
相关论文
共 25 条
[1]  
Arumugam S, 2012, AUSTRALAS J COMB, V54, P279
[2]   Nets and groups [J].
Baer, Reinhold .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 46 (1-3) :110-141
[3]   Nets and groups. II [J].
Baer, Reinhold .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1940, 47 (1-3) :435-439
[4]  
BERGE Claude., 1968, Principes de Combinatoire
[5]   BALANCED MAGIC RECTANGLES [J].
BIER, T ;
ROGERS, DG .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (04) :285-299
[6]   Centrally symmetric and magic rectangles [J].
Bier, T ;
Kleinschmidt, A .
DISCRETE MATHEMATICS, 1997, 176 (1-3) :29-42
[7]  
Bokowski J., 1989, Lecture Notes in Mathematics, V1355, DOI [10.1007/BFb0089253, DOI 10.1007/BFB0089253]
[8]  
Colbourn C.J., 2007, Discrete Mathematics and Its Applications
[9]  
Dickson T. J., 1969, Journal of Combinatorial Theory, Series A, V7, P191, DOI 10.1016/S0021-9800(69)80011-6
[10]   Graph Approach to Solving Problems of Combinatorial Recognition [J].
Donets G.A. .
Cybernetics and Systems Analysis, 2017, 53 (06) :857-865