Molecular dynamics of dissolution of a 36-chain cellulose Iβ microfibril at different temperatures above the critical pressure of water

被引:10
作者
Bregado, Jurgen Lange [1 ]
Tavares, Frederico Wanderley [1 ,2 ]
Secchi, Argimiro Resende [1 ,2 ]
Segtovich, Iuri Soter Viana [2 ]
机构
[1] Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, BR-21941914 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Escola Quim, Programa Posgrad Engn Proc Quim & Bioquim, BR-21941972 Rio De Janeiro, Brazil
关键词
Crystallinity; Cellulose I beta; Thermodynamic calculations; Supercritical conditions of water; Radial distribution function; Molecular dynamics; NATIVE CRYSTALLINE CELLULOSE; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; SUPERCRITICAL WATER; FORCE-FIELD; THERMODYNAMIC PROPERTIES; COMPRESSED WATER; PHASE-DIAGRAM; SIMULATIONS; MODEL;
D O I
10.1016/j.molliq.2021.116271
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cellulose dissolution is an essential pretreatment process for the chemical conversion of lignocellulosic biomass into biofuels. Here, the dissolution of a 36-chain Ib cellulose model with a hexagonal crosssection (M36HCS) in water is analyzed by Molecular Dynamics (MD) with CHARMM36/TIP3P (C36/TIP3P) force field using gradual heating at 25 MPa. Our simulations showed that the dissolution of M36HCS starts to occur between 560 K and 600 K, which agrees with experimental observations. In our system, conditions near the critical point of water reveal that translational and rotational entropies decrease, while the low hydration level increases vibrational entropy. This investigation theoretically shows that C36/TIP3P adequately reproduces the dissolution of M36HCS even in high-pressure water as corroborated in reactors. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 87 条
[21]   Cooking cellulose in hot and compressed water [J].
Deguchi, Shigeru ;
Tsujii, Kaoru ;
Horikoshi, Koki .
CHEMICAL COMMUNICATIONS, 2006, (31) :3293-3295
[22]   The maize primary cell wall microfibril: A new model derived from direct visualization [J].
Ding, SY ;
Himmel, ME .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2006, 54 (03) :597-606
[23]  
Fernandez-Prini R.J., 1992, HIGH TEMPERATURE AQU
[24]  
Flory P J., PRINCIPLES POLYM CHE
[25]  
Foston M., 2014, MAT BIOFUELS MAT ENE, P33
[26]   Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index [J].
French, Alfred D. ;
Cintron, Michael Santiago .
CELLULOSE, 2013, 20 (01) :583-588
[27]   Correlation between thermal expansion and heat capacity [J].
Garai, Jozsef .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2006, 30 (03) :354-356
[28]   Cellulose-Builder: A toolkit for building crystalline structures of cellulose [J].
Gomes, Thiago C. F. ;
Skaf, Munir S. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (14) :1338-1346
[29]   VIBRATIONAL DENSITIES OF STATES FROM MOLECULAR-DYNAMICS CALCULATIONS [J].
GONCALVES, S ;
BONADEO, H .
PHYSICAL REVIEW B, 1992, 46 (18) :12019-12021
[30]   On the Molecular Origins of Biomass Recalcitrance: The Interaction Network and Solvation Structures of Cellulose Microfibrils [J].
Gross, Adam S. ;
Chu, Jhih-Wei .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (42) :13333-13341