Collaborative in-network processing for target tracking

被引:151
作者
Liu, J [1 ]
Reich, J [1 ]
Zhao, F [1 ]
机构
[1] Palo Alto Res Ctr, Palo Alto, CA 94304 USA
关键词
sensor network; target tracking; distributed processing; Bayesian filtering; beamforming; mutual information;
D O I
10.1155/S111086570321204X
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a class of signal processing techniques for collaborative signal processing in ad hoc sensor networks, focusing on a vehicle tracking application. In particular, we study two types of commonly used sensors-acoustic-amp Etude sensors for target distance estimation and direction-of-arrival sensors for bearing estimation-and investigate how networks of such sensors can collaborate to extract useful information with minimal resource usage. The information-driven sensor collaboration has several advantages: tracking is distributed, and the network is energy-efficient, activated only on a when-needed basis. We demonstrate the effectiveness of the approach to target tracking using both simulation and field data.
引用
收藏
页码:378 / 391
页数:14
相关论文
共 10 条
[1]   Self-organized distributed sensor network entity tracking [J].
Brooks, RR ;
Griffin, C ;
Friedlander, DS .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2002, 16 (03) :207-219
[2]  
CHEN JC, 2001, SPIE P, V4474
[3]   Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks [J].
Chu, M ;
Haussecker, H ;
Zhao, F .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2002, 16 (03) :293-313
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]  
Estrin D., 1999, P MOBICOM, DOI DOI 10.1145/313451.313556
[6]  
Haykin S., 1991, ADAPTIVE FILTER THEO
[7]  
HERO AO, 1999, P IEEE INT C IM PROC, V2, P16
[8]  
Kinsler L.E., 2001, FUNDAMENTALS ACOUSTI, V4th
[9]  
Poor H., 1985, An Introduction to Signal Detection and Estimation
[10]   FUNCTIONALS SATISFYING A DATA-PROCESSING THEOREM [J].
ZIV, J ;
ZAKAI, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) :275-283