Inserting an edge into a planar graph

被引:36
作者
Gutwenger, C
Mutzel, P
Weiskircher, R
机构
[1] Res Ctr Caesar, D-53175 Bonn, Germany
[2] Vienna Univ Technol, A-1040 Vienna, Austria
关键词
crossing minimization; combinatorial embeddings; planarization; graph drawing;
D O I
10.1007/s00453-004-1128-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Computing a crossing minimum drawing of a given planar graph G augmented by an additional edge e where all crossings involve e, has been a long standing open problem in graph drawing. Alternatively, the problem can be stated as finding a combinatorial embedding of a planar graph G where the given edge e can be inserted with the minimum number of crossings. Many problems concerned with the optimization over the set of all combinatorial embeddings of a planar graph turned out to be NP-hard. Surprisingly, we found a conceptually simple linear time algorithm based on SPQR-trees, that is able to find a solution with the minimum number of crossings.
引用
收藏
页码:289 / 308
页数:20
相关论文
共 19 条
[1]   Computing orthogonal drawings with the minimum number of bends [J].
Bertolazzi, P ;
Di Battista, G ;
Didimo, W .
IEEE TRANSACTIONS ON COMPUTERS, 2000, 49 (08) :826-840
[2]   A LINEAR ALGORITHM FOR EMBEDDING PLANAR GRAPHS USING PQ-TREES [J].
CHIBA, N ;
NISHIZEKI, T ;
ABE, S ;
OZAWA, T .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (01) :54-76
[3]   An experimental comparison of four graph drawing algorithms [J].
DiBattista, G ;
Garg, A ;
Liotta, G ;
Tamassia, R ;
Tassinari, E ;
Vargiu, F .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (5-6) :303-325
[4]   On-line planarity testing [J].
DiBattista, G ;
Tamassia, R .
SIAM JOURNAL ON COMPUTING, 1996, 25 (05) :956-997
[5]  
Fränken D, 2003, PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III, P240
[6]  
Gutwenger C, 2004, LECT NOTES COMPUT SC, V2912, P13
[7]  
Gutwenger C, 2004, LECT NOTES COMPUT SC, V2912, P259
[8]  
Gutwenger C, 2001, SIAM PROC S, P246
[9]  
Gutwenger C., 2001, LNCS, P77, DOI DOI 10.1007/3-540-44541-2_8
[10]  
Harary F., 1994, GRAPH THEORY