Brazilin inhibits fibrillogenesis of human islet amyloid polypeptide, disassembles mature fibrils, and alleviates cytotoxicity

被引:40
作者
Guo, Jingjing [1 ]
Sun, Wanqi [2 ]
Li, Li [3 ]
Liu, Fufeng [1 ,4 ]
Lu, Wenyu [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Syst Bioengn, Dept Biochem Engn,Minist Educ, Tianjin 300072, Peoples R China
[2] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL USA
[3] Tianjin Univ Sci & Technol, Coll Marine & Environm Sci, Tianjin 300457, Peoples R China
[4] Tianjin Univ Sci & Technol, Key Lab Ind Fermentat Microbiol,Minist Educ,Coll, Natl & Local United Engn Lab Metab Control Fermen, Tianjin Key Lab Ind Microbiol,Natl Engn Lab Ind E, Tianjin 300457, Peoples R China
基金
中国国家自然科学基金;
关键词
BETA-PROTEIN FIBRILLATION; CROSS-SEEDING ASSEMBLIES; A-BETA; ALZHEIMERS-DISEASE; MOLECULAR-MECHANISM; SECONDARY STRUCTURE; DIABETES-MELLITUS; CELL TOXICITY; AGGREGATION; PEPTIDE;
D O I
10.1039/c7ra05742c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fibrillogenesis of human islet amyloid polypeptide (hIAPP) is a pathological hallmark of type II diabetes mellitus (T2DM), and the inhibition of hIAPP fibrillogenesis is an important strategy for the prevention and treatment of T2DM. In this study, the inhibitory effects of brazilin on the fibrillization and cytotoxicity of hIAPP were examined using the thioflavin T fluorescence (ThT) assay, transmission electron microscopy (TEM), circular dichroism (CD) spectroscopy, cytotoxicity assays, and molecular dynamics simulations. Both the ThT and TEM results have shown that brazilin inhibits hIAPP fibrillogenesis in a dose-dependent manner. CD studies revealed that brazilin delays the conformational transition of hIAPP from its initial ahelical to the beta-sheet form. As a result, brazilin greatly alleviates hIAPP-induced cytotoxicity. Moreover, we also found that brazilin disassembles preexisting hIAPP fibrils, and alleviates the cytotoxicity of hIAPP aggregates. The results of free energy decomposition studies calculated using molecular mechanics-Poisson-Boltzmann surface area analysis revealed that hydrophobic interactions contribute more than 75% of the free energy of binding in the brazilin-hIAPP complex, while electrostatic interactions (i.e., hydrogen bonds) play a secondary role (<25%). Two binding sites of brazilin on the hIAPP pentamer were identified, encompassing the N-terminal region and the turn region. There are 11 important residues of hIAPP that strongly interact with brazilin - Asn3, Thr4, Thr9, Arg11, Asn14, Phe15, His18, Ser19, Ser20, Asn21 and Phe23. The findings presented here will contribute to a comprehensive understanding of the inhibitory effect of brazilin on the fibrillogenesis of hIAPP, which is critical for the search for more effective agents that can inhibit hIAPP fibrillogenesis.
引用
收藏
页码:43491 / 43501
页数:11
相关论文
共 79 条
[71]   ISLET AMYLOID POLYPEPTIDE, ISLET AMYLOID, AND DIABETES MELLITUS [J].
Westermark, Per ;
Andersson, Arne ;
Westermark, Gunilla T. .
PHYSIOLOGICAL REVIEWS, 2011, 91 (03) :795-826
[72]   Design of LVFFARK and LVFFARK-Functionalized Nanoparticles for Inhibiting Amyloid β-Protein Fibrillation and Cytotoxicity [J].
Xiong, Neng ;
Dong, Xiao-Yan ;
Zheng, Jie ;
Liu, Fu-Feng ;
Sun, Yan .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (10) :5650-5662
[73]   Inhibitory Mechanism of Epigallocatechin Gallate on Fibrillation and Aggregation of Amidated Human Islet Amyloid Polypeptide [J].
Xu, Zhi-Xue ;
Ma, Gong-Li ;
Zhang, Qiang ;
Chen, Cong-Heng ;
He, Yan-Ming ;
Xu, Li-Hui ;
Zhou, Guang-Rong ;
Li, Zhen-Hua ;
Yang, Hong-Jie ;
Zhou, Ping .
CHEMPHYSCHEM, 2017, 18 (12) :1611-1619
[74]   Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide [J].
Xu, Zhi-Xue ;
Zhang, Qiang ;
Ma, Gong-Li ;
Chen, Cong-Heng ;
He, Yan-Ming ;
Xu, Li-Hui ;
Zhang, Yuan ;
Zhou, Guang-Rong ;
Li, Zhen-Hua ;
Yang, Hong-Jie ;
Zhou, Ping .
JOURNAL OF DIABETES RESEARCH, 2016, 2016
[75]   Molecular Characterization of the Hetero-Assembly of β-Amyloid Peptide with Islet Amyloid Polypeptide [J].
Yan, Li-Mei ;
Velkova, Aleksandra ;
Kapurniotu, Aphrodite .
CURRENT PHARMACEUTICAL DESIGN, 2014, 20 (08) :1182-1191
[76]   Molecular Understanding of Aß-hIAPP Cross-Seeding Assemblies on Lipid Membranes [J].
Zhang, Mingzhen ;
Hu, Rundong ;
Ren, Baiping ;
Chen, Hong ;
Jiang, Binbo ;
Ma, Jie ;
Zheng, Jie .
ACS CHEMICAL NEUROSCIENCE, 2017, 8 (03) :524-537
[77]   Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid polypeptide [J].
Zhang, Mingzhen ;
Hu, Rundong ;
Chen, Hong ;
Chang, Yung ;
Ma, Jie ;
Liang, Guizhao ;
Mi, Jingyan ;
Wang, Yaru ;
Zheng, Jie .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (35) :23245-23256
[78]   Polymorphic Associations and Structures of the Cross-Seeding of Aβ1-42 and hIAPP1-37 Polypeptides [J].
Zhang, Mingzhen ;
Hu, Rundong ;
Chen, Hong ;
Gong, Xiong ;
Zhou, Feimeng ;
Zhang, Li ;
Zheng, Jie .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (08) :1628-1639
[79]   Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers [J].
Zhang, Mingzhen ;
Hu, Rundong ;
Chen, Hong ;
Chang, Yung ;
Gong, Xiong ;
Liu, Fufeng ;
Zheng, Jie .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (16) :10373-10382