Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects

被引:74
作者
Barad, Hannah-Noa [1 ]
Kwon, Hyunah [1 ]
Alarcon-Correa, Mariana [1 ]
Fischer, Peer [1 ,2 ]
机构
[1] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Phys Chem, D-70569 Stuttgart, Germany
关键词
nanoparticle patterns; parallel methods; large-area patterning; template nanopatterns; nontemplate nanopatterns; nonlithographic methods; chemical/physical patterning; organic templates; magnetic/electric field patterning; COPOLYMER MICELLE NANOLITHOGRAPHY; GOLD COLLOIDAL NANOPARTICLES; 2-DIMENSIONAL ARRAYS; SURFACE PATTERNS; BEAM LITHOGRAPHY; DNA; SHAPE; TEMPLATE; NANOARRAYS; PARTICLES;
D O I
10.1021/acsnano.0c09999
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.
引用
收藏
页码:5861 / 5875
页数:15
相关论文
共 122 条
[11]   Material platforms for optical metasurfaces [J].
Choudhury, Sajid M. ;
Wang, Di ;
Chaudhuri, Krishnakali ;
DeVault, Clayton ;
Kildishev, Alexander V. ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
NANOPHOTONICS, 2018, 7 (06) :959-987
[12]   Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography [J].
Demers, LM ;
Ginger, DS ;
Park, SJ ;
Li, Z ;
Chung, SW ;
Mirkin, CA .
SCIENCE, 2002, 296 (5574) :1836-1838
[13]   Colloidal assembly directed by virtual magnetic moulds [J].
Demiroers, Ahmet F. ;
Pillai, Pramod P. ;
Kowalczyk, Bartlomiej ;
Grzybowski, Bartosz A. .
NATURE, 2013, 503 (7474) :99-103
[14]   Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces [J].
Dimitrov, AS ;
Nagayama, K .
LANGMUIR, 1996, 12 (05) :1303-1311
[15]   Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface [J].
Dong, Angang ;
Chen, Jun ;
Vora, Patrick M. ;
Kikkawa, James M. ;
Murray, Christopher B. .
NATURE, 2010, 466 (7305) :474-477
[16]   Size and shape control of a variety of metallic nanostructures using tilted, rotating evaporation and lithographic lift-offtechniques [J].
Eschimese, Damien ;
Vaurette, Francois ;
Troadec, David ;
Leveque, Gaetan ;
Melin, Thierry ;
Arscott, Steve .
SCIENTIFIC REPORTS, 2019, 9 (1)
[17]   Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment [J].
Evers, Wiel H. ;
Goris, Bart ;
Bals, Sara ;
Casavola, Marianna ;
de Graaf, Joost ;
van Roij, Rene ;
Dijkstra, Marjolein ;
Vanmaekelbergh, Daniel .
NANO LETTERS, 2013, 13 (06) :2317-2323
[18]   Efficiency of assembling of nanowires in suspension by ac electric fields [J].
Fan, D. L. ;
Zhu, F. Q. ;
Cammarata, R. C. ;
Chien, C. L. .
APPLIED PHYSICS LETTERS, 2006, 89 (22)
[19]   Tunable 2D binary colloidal alloys for soft nanotemplating [J].
Fernandez-Rodriguez, Miguel Angel ;
Elnathan, Roey ;
Ditcovski, Ran ;
Grillo, Fabio ;
Conley, Gaurasundar Marc ;
Timpu, Flavia ;
Rauh, Astrid ;
Geisel, Karen ;
Ellenbogen, Tal ;
Grange, Rachel ;
Scheffold, Frank ;
Karg, Matthias ;
Richtering, Walter ;
Voelcker, Nicolas H. ;
Isa, Lucio .
NANOSCALE, 2018, 10 (47) :22189-22195
[20]  
Flauraud V, 2017, NAT NANOTECHNOL, V12, P73, DOI [10.1038/nnano.2016.179, 10.1038/NNANO.2016.179]