Can the implied volatility surface move by parallel shifts?

被引:29
作者
Rogers, L. C. G. [1 ]
Tehranchi, M. R. [1 ]
机构
[1] Univ Cambridge, Stat Lab, Ctr Math Sci, Cambridge CB3 0WB, England
关键词
Implied volatility; Smile asymptotics; Long rates; RATES; LONG;
D O I
10.1007/s00780-008-0081-9
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This note explores the analogy between the dynamics of the interest rate term structure and the implied volatility surface of a stock. In particular, we prove an impossibility theorem conjectured by Steve Ross.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 14 条
[1]  
Balland P., 2002, Quantitative Finance, V2, P31, DOI 10.1088/1469-7688/2/1/303
[2]  
BENAIM S, MATH FINANC IN PRESS
[3]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[4]   The finite moment log stable process and option pricing [J].
Carr, P ;
Wu, LR .
JOURNAL OF FINANCE, 2003, 58 (02) :753-777
[5]  
Durrleman V., 2004, THESIS PRINCETON U
[6]   Long forward and zero-coupon rates can never fall [J].
Dybvig, PH ;
Ingersoll, JE ;
Ross, SA .
JOURNAL OF BUSINESS, 1996, 69 (01) :1-25
[7]  
Hubalek F, 2002, MATH FINANC, V12, P447, DOI 10.1111/j.1467-9965.2002.tb00133.x
[8]  
Lee RW, 2005, RECENT ADVANCES IN APPLIED PROBABILITY, P241, DOI 10.1007/0-387-23394-6_11
[9]   The moment formula for implied volatility at extreme strikes [J].
Lee, RW .
MATHEMATICAL FINANCE, 2004, 14 (03) :469-480
[10]  
Lewis A.L., 2000, OPTION VALUATION STO