Investigation of the selectivity-mechanism of copper (I) sulfide (Cu2S) as a dopant-free carrier selective contact for silicon solar cells

被引:13
作者
Sun, Z. [1 ]
Yi, C. [1 ]
Hameiri, Z. [1 ]
Bremner, S. P. [1 ]
机构
[1] UNSW Sydney, Sch Photovolta & Renewable Energy Engn, Sydney, NSW, Australia
关键词
Copper(I) sulfide; Carrier selective contacts; Thermal evaporation; Selectivity mechanism; Dopant free; THIN-FILM; OPTICAL-PROPERTIES; NANOCRYSTALS; PERFORMANCE; CHALCOCITE; TRANSITION; EFFICIENCY; GROWTH;
D O I
10.1016/j.apsusc.2021.149727
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carrier selective contacts based on dopant free materials are receiving increased attention. Copper(I) sulfide (Cu2S), earth-abundant and non-toxic, shows potential for use in silicon (Si) solar cells, though its carrier selectivity mechanism remains unclear. We present a detailed investigation of the selectivity mechanisms behind thermally evaporated Cu2S on Si. Deposited Cu2S layers are studied by X-ray photoelectron spectroscopy, Auger electron spectroscopy, X-ray diffraction and UV/VIS (ultraviolet?visible) methods. From X-ray photoelectron spectroscopy and Auger electron spectroscopy, only sulfur related Cu(I) bonds are observed in the deposited film. X-ray diffraction measurements indicate that Cu1.95S (djurleite) may also exist in the film. The indirect and direct bandgaps are determined to be 1.2 eV and 2.2 eV, respectively. Band bending of -0.6 eV is calculated for Cu2S/ n-Si (-5 ??cm), while it is significantly lower (-0.07 eV) for Cu2S/p-Si (-2.25 ??cm). Current-voltage measurements indicate that the carrier selectivity originates from an induced junction at the Cu2S/n-Si interface, and not from a large band-offset of the conduction band. The Cu2S/p-Si structure displays no carrier selectivity, a finding attributed to the insufficient band bending at the interface.
引用
收藏
页数:7
相关论文
共 58 条
[1]   New routes to copper sulfide nanostructures and thin films [J].
Abdelhady, Ahmed Lutfi ;
Ramasamy, Karthik ;
Malik, Mohammad Azad ;
O'Brien, Paul ;
Haigh, Sarah J. ;
Raftery, James .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (44) :17888-17895
[2]   Passivating contacts for crystalline silicon solar cells [J].
Allen, Thomas G. ;
Bullock, James ;
Yang, Xinbo ;
Javey, Ali ;
De Wolf, Stefaan .
NATURE ENERGY, 2019, 4 (11) :914-928
[3]   Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells [J].
Almora, Osbel ;
Gerling, Luis G. ;
Voz, Cristobal ;
Alcubilla, Ramon ;
Puigdollers, Joaquim ;
Garcia-Belmonte, Germa .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 168 :221-226
[4]  
[Anonymous], 154722001 ISO
[5]   High-efficiency crystalline silicon solar cells: status and perspectives [J].
Battaglia, Corsin ;
Cuevas, Andres ;
De Wolf, Stefaan .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1552-1576
[6]   Nanocrystalline copper sulfide of varying morphologies and stoichiometries in a low temperature solvothermal process using a new single-source molecular precursor [J].
Bera, Pulakesh ;
Seok, Sang Il .
SOLID STATE SCIENCES, 2012, 14 (08) :1126-1132
[7]  
Bivour M., 2017, PV EUR PV SOL EN C E, V5
[8]   Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells [J].
Bivour, Martin ;
Temmler, Jan ;
Steinkemper, Heiko ;
Hermle, Martin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 142 :34-41
[9]   22.8-PERCENT EFFICIENT SILICON SOLAR-CELL [J].
BLAKERS, AW ;
WANG, A ;
MILNE, AM ;
ZHAO, JH ;
GREEN, MA .
APPLIED PHYSICS LETTERS, 1989, 55 (13) :1363-1365
[10]   Efficient silicon solar cells with dopant-free asymmetric heterocontacts [J].
Bullock, James ;
Hettick, Mark ;
Geissbuhler, Jonas ;
Ong, Alison J. ;
Allen, Thomas ;
Sutter-Fella, Carolin M. ;
Chen, Teresa ;
Ota, Hiroki ;
Schaler, Ethan W. ;
De Wolf, Stefaan ;
Ballif, Christophe ;
Cuevas, Andres ;
Javey, Ali .
NATURE ENERGY, 2016, 1