Quasi-Newton Iterative Projection Algorithm for Sparse Recovery

被引:19
作者
Jing, Mingli [1 ,2 ]
Zhou, Xueqin [2 ]
Qi, Chun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[2] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Peoples R China
关键词
Sparse recovery; Orthogonal projection; Compressed sensing; Quasi-Newton; SIGNAL RECOVERY;
D O I
10.1016/j.neucom.2014.04.055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A computationally simple and efficient algorithm for compressed sensing is proposed. The algorithm, a simple combination of the orthogonal projection algorithm and of a novel quasi-Newton optimization scheme, is termed Quasi-Newton Iterative Projection (QNIP). There are two main advantages of the proposed algorithm. First, the computation of the proposed algorithm is very simple, which involves the application of the sampling matrix and its transpose at each iteration. Second, the algorithm appears to require a fewer number of iterations for convergence, whilst it provides a higher rate of perfect recovery compared with the reference algorithms. The performance of the proposed algorithm is validated via theoretical analysis as well as some numerical examples. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 173
页数:5
相关论文
共 17 条
[1]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[2]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[3]   An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition [J].
Candes, Emmanuel J. ;
Wakin, Michael B. .
IEEE Signal Processing Magazine, 2008, 25 (02) :21-30
[4]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[5]   Subspace Pursuit for Compressive Sensing Signal Reconstruction [J].
Dai, Wei ;
Milenkovic, Olgica .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) :2230-2249
[6]   Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit [J].
Donoho, David L. ;
Tsaig, Yaakov ;
Drori, Iddo ;
Starck, Jean-Luc .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) :1094-1121
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[9]   CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [J].
Needell, D. ;
Tropp, J. A. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (03) :301-321
[10]   Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit [J].
Needell, Deanna ;
Vershynin, Roman .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (03) :317-334