Global stability of an SIR epidemic model with time delay

被引:168
作者
Ma, WB [1 ]
Mei, S
Takeuchi, Y
机构
[1] Univ Sci & Technol Beijing, Appl Sci Coll, Dept Mat & Mech, Beijing 100083, Peoples R China
[2] Shizuoka Univ, Fac Engn, Dept Syst Engn, Hamamatsu, Shizuoka 432, Japan
关键词
SIR epidemic model; time delay; global asymptotic stability;
D O I
10.1016/j.aml.2003.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This letter considers the global asymptotic stability of the well-known SIR epidemic model with a time delay. The eventual lower bound obtained by the method given in (11 can be successfully applied to give the length of the time delay ensuring the global asymptotic stability of the endemic equilibrium point. 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1141 / 1145
页数:5
相关论文
共 16 条
[1]   POPULATION BIOLOGY OF INFECTIOUS-DISEASES .1. [J].
ANDERSON, RM ;
MAY, RM .
NATURE, 1979, 280 (5721) :361-367
[2]   Global asymptotic stability of an SIR epidemic model with distributed time delay [J].
Beretta, E ;
Hara, T ;
Ma, WB ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4107-4115
[3]  
BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
[4]   GLOBAL STABILITY RESULTS FOR A GENERALIZED LOTKA-VOLTERRA SYSTEM WITH DISTRIBUTED DELAYS - APPLICATIONS TO PREDATOR-PREY AND TO EPIDEMIC SYSTEMS [J].
BERETTA, E ;
CAPASSO, V ;
RINALDI, F .
JOURNAL OF MATHEMATICAL BIOLOGY, 1988, 26 (06) :661-688
[5]   Convergence results in SIR epidemic models with varying population sizes [J].
Beretta, E ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) :1909-1921
[6]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[7]  
COOKE KL, 1979, J MATH, V9, P31
[8]   UNIFORM PERSISTENCE IN FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
FREEDMAN, HI ;
RUAN, SG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 115 (01) :173-192
[9]   PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS [J].
HALE, JK ;
WALTMAN, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :388-395
[10]  
HALE JK, 1977, THEORY FUNCTIONAL DI