Deep learning based segmentation of brain tissue from diffusion MRI

被引:42
|
作者
Zhang, Fan [1 ]
Breger, Anna [2 ]
Cho, Kang Ik Kevin [3 ]
Ning, Lipeng [3 ]
Westin, Carl-Fredrik [1 ]
O'Donnell, Lauren J. [1 ]
Pasternak, Ofer [1 ,3 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[2] Univ Vienna, Fac Math, Vienna, Austria
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Psychiat, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
EPI DISTORTION; CLASSIFICATION; REGISTRATION; SIGNAL;
D O I
10.1016/j.neuroimage.2021.117934
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Segmentation of brain tissue types from diffusion MRI (dMRI) is an important task, required for quantification of brain microstructure and for improving tractography. Current dMRI segmentation is mostly based on anatomical MRI (e.g., T1-and T2-weighted) segmentation that is registered to the dMRI space. However, such inter modality registration is challenging due to more image distortions and lower image resolution in dMRI as compared with anatomical MRI. In this study, we present a deep learning method for diffusion MRI segmentation, which we refer to as DDSeg. Our proposed method learns tissue segmentation from high-quality imaging data from the Human Connectome Project (HCP), where registration of anatomical MRI to dMRI is more precise. The method is then able to predict a tissue segmentation directly from new dMRI data, including data collected with different acquisition protocols, without requiring anatomical data and inter-modality registration. We train a convolutional neural network (CNN) to learn a tissue segmentation model using a novel augmented target loss function designed to improve accuracy in regions of tissue boundary. To further improve accuracy, our method adds diffusion kurtosis imaging (DKI) parameters that characterize non-Gaussian water molecule diffusion to the conventional diffusion tensor imaging parameters. The DKI parameters are calculated from the recently proposed mean-kurtosis-curve method that corrects implausible DKI parameter values and provides additional features that discriminate between tissue types. We demonstrate high tissue segmentation accuracy on HCP data, and also when applying the HCP-trained model on dMRI data from other acquisitions with lower resolution and fewer gradient directions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI
    Anbeek, Petronella
    Isgum, Ivana
    van Kooiji, Britt J. M.
    Moi, Christian P.
    Kersbergen, Karina J.
    Groenendaal, Floris
    Viergever, Max A.
    de Vries, Linda S.
    Benders, Manon J. N. L.
    PLOS ONE, 2013, 8 (12):
  • [32] Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey
    Altini, Nicola
    Prencipe, Berardino
    Cascarano, Giacomo Donato
    Brunetti, Antonio
    Brunetti, Gioacchino
    Triggiani, Vito
    Carnimeo, Leonarda
    Marino, Francescomaria
    Guerriero, Andrea
    Villani, Laura
    Scardapane, Arnaldo
    Bevilacqua, Vitoantonio
    NEUROCOMPUTING, 2022, 490 : 30 - 53
  • [33] Performance enhancement of MRI-based brain tumor classification using suitable segmentation method and deep learning-based ensemble algorithm
    Tandel, Gopal S.
    Tiwari, Ashish
    Kakde, O. G.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [34] Brain tumor detection and segmentation using deep learning
    Ahsan, Rafia
    Shahzadi, Iram
    Najeeb, Faisal
    Omer, Hammad
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2025, 38 (01): : 13 - 22
  • [35] Deep Learning Hybrid Techniques for Brain Tumor Segmentation
    Munir, Khushboo
    Frezza, Fabrizio
    Rizzi, Antonello
    SENSORS, 2022, 22 (21)
  • [36] Impact of Markov Random Field Optimizer on MRI-based Tissue Segmentation in the Aging Brain
    Schwarz, Christopher G.
    Tsui, Alex
    Fletcher, Evan
    Singh, Baljeet
    DeCarli, Charles
    Carmichael, Owen
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7812 - 7815
  • [37] BRAIN TUMOR SEGMENTATION FROM MULTIPLE MRI SEQUENCES USING MULTIPLE KERNEL LEARNING
    Boughattas, Naouel
    Berar, Maxime
    Hamrouni, Kamel
    Ruan, Su
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1887 - 1891
  • [38] Deep learning-based parameter estimation in fetal diffusion-weighted MRI
    Karimi, Davood
    Jaimes, Camilo
    Machado-Rivas, Fedel
    Vasung, Lana
    Khan, Shadab
    Warfield, Simon K.
    Gholipour, Ali
    NEUROIMAGE, 2021, 243
  • [39] FastSurferVINN: Building resolution-independence into deep learning segmentation methods-A solution for HighRes brain MRI
    Henschel, Leonie
    Kuegler, David
    Reuter, Martin
    NEUROIMAGE, 2022, 251
  • [40] Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods
    de Boer, Renske
    Vrooman, Henri A.
    Ikram, M. Arfan
    Vernooij, Meike W.
    Breteler, Monique M. B.
    van der Lugt, Aad
    Niessen, Wiro J.
    NEUROIMAGE, 2010, 51 (03) : 1047 - 1056