Hierarchical micro-flowers self-assembled from SnS monolayers and nitrogen-doped graphene lamellar nanosheets as advanced anode for lithium-ion battery

被引:28
作者
Mei, Shixiong [1 ,2 ]
An, Weili [1 ,2 ]
Fu, Jijiang [1 ,2 ]
Guo, Weiyuan [1 ,2 ]
Feng, Xiaoyu [1 ,2 ]
Li, Xingxing [1 ,2 ]
Gao, Biao [1 ,2 ,5 ,6 ]
Zhang, Xuming [1 ,2 ]
Huo, Kaifu [1 ,2 ,3 ,4 ]
Chu, Paul K. [5 ,6 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Inst Adv Mat & Nanotechnol, Wuhan 430081, Peoples R China
[3] Huazhong Univ Sci & Technol, WNLO, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[5] City Univ Hong Kong, Dept Phys, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[6] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Tin sulfide; Graphene; Hybrid; Anode; Lithium ion batteries; RATE CAPABILITY; HIGH-CAPACITY; CARBON; PERFORMANCE; COMPOSITE; STORAGE; NANOTUBES; ULTRAFAST; HYBRIDS; SNO2;
D O I
10.1016/j.electacta.2019.135292
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Although layered tin sulfide (SnS) nano-architectures are drawing much attention as anode materials in lithium ion batteries (LIBs) because of the high theoretical capacity, there are drawbacks such as the large volume expansion and low conductivity. To overcome these difficulties, attempts have been made to prepare tin sulfide/carbon (SnS/C) nano-hybrids by anchoring/coating nanostructured SnS on/in nano-sized carbon. However, the commonly reported SnS/C composites still suffer from initial Coulombic efficiency (ICE), high electrode swelling, and inferior long-term stability because of weak chemical affinity, and limited contacting interface between SnS and carbon specially at high SnS mass percentage. Herein, we report hierarchical micro-flowers self-assembled from SnS monolayers and nitrogen-doped graphene (NG) lamellar nanosheets (NG-SnS) which are suitable for LIBs anode. The NG-SnS with a high SnS mass percentage (93.9 wt%), obvious CeS bond, and increased contact provide to boost activity, utilization, conductivity, and reversibility of Li storage. Moreover, the elastic NG layers work as a mechanical supporter to decrease the outer volumetric expansion and restrain electrochemical agglomeration of SnS during (de)lithiation processes. The molecular engineered NG-SnS hybrid shows a high initial Coulombic efficiency of 88.2%, robust cycle stability with a high capacity of 790 mAh g(-1) after 900 cycles at 0.5 C, considerable rate performance, and small electrode swelling of 12%. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 51 条
[1]   SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries [J].
Ai, Jinjin ;
Lei, Yike ;
Yang, Shuai ;
Lai, Chunyan ;
Xu, Qunjie .
CHEMICAL ENGINEERING JOURNAL, 2019, 357 :150-158
[2]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Dual carbon layer hybridized mesoporous tin hollow spheres for fast-rechargeable and highly-stable lithium-ion battery anodes [J].
An, Weili ;
Fu, Jijiang ;
Mei, Shixiong ;
Xia, Lu ;
Li, Xingxing ;
Gu, Huazhi ;
Zhang, Xuming ;
Gao, Biao ;
Chu, Paul K. ;
Huo, Kaifu .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (27) :14422-14429
[4]  
[Anonymous], 2019, Angew. Chem.
[5]   Porous SnS Nanorods/Carbon Hybrid Materials as Highly Stable and High Capacity Anode for Li-Ion Batteries [J].
Cai, Junjie ;
Li, Zesheng ;
Shen, Pei Kang .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (08) :4093-4098
[6]   One-to-One Comparison of Graphite-Blended Negative Electrodes Using Silicon Nanolayer-Embedded Graphite versus Commercial Benchmarking Materials for High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Kim, Namhyung ;
Ma, Jiyoung ;
Cho, Jaephil ;
Ko, Minseong .
ADVANCED ENERGY MATERIALS, 2017, 7 (15)
[7]   A Quinonoid-Imine-Enriched Nanostructured Polymer Mediator for Lithium-Sulfur Batteries [J].
Chen, Chen-Yu ;
Peng, Hong-Jie ;
Hou, Ting-Zheng ;
Zhai, Pei-Yan ;
Li, Bo-Quan ;
Tang, Cheng ;
Zhu, Wancheng ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2017, 29 (23)
[8]   Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery [J].
Chen, Dong ;
Tan, Huiteng ;
Rui, Xianhong ;
Zhang, Qi ;
Feng, Yuezhan ;
Geng, Hongbo ;
Li, Chengchao ;
Huang, Shaoming ;
Yu, Yan .
INFOMAT, 2019, 1 (02) :251-259
[9]   Persistent zinc-ion storage in mass-produced V2O5 architecture [J].
Chen, Dong ;
Rui, Xianhong ;
Zhang, Qi ;
Geng, Hongbo ;
Gan, Liyong ;
Zhang, Wei ;
Li, Chengchao ;
Huang, Shaoming ;
Yu, Yan .
NANO ENERGY, 2019, 60 :171-178
[10]   Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage [J].
Chen, Ziliang ;
Wu, Renbing ;
Wang, Hao ;
Zhang, Kelvin H. L. ;
Song, Yun ;
Wu, Feilong ;
Fang, Fang ;
Sun, Dalin .
NANO RESEARCH, 2018, 11 (02) :966-978