Quasi-universality in the packing of uniform spheres under gravity

被引:17
作者
An, X. Z. [1 ,2 ]
Dong, K. J. [1 ,4 ]
Yang, R. Y. [1 ]
Zou, R. P. [1 ,3 ]
Wang, C. C. [1 ,3 ]
Yu, A. B. [1 ,3 ]
机构
[1] Univ New S Wales, Sch Mat Sci & Engn, Lab Simulat & Modelling Particulate Syst, Sydney, NSW 2052, Australia
[2] Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China
[3] Monash Univ, Dept Chem Engn, Lab Simulat & Modelling Particulate Syst, Clayton, Vic 3800, Australia
[4] Univ Western Sydney, Inst Infrastruct Engn, Penrith, NSW 2751, Australia
基金
中国国家自然科学基金;
关键词
Packing of spheres; Packing fraction; Packing structure; Porous media; Granular materials; CRYSTALLIZATION; SIMULATION; FLOW;
D O I
10.1007/s10035-016-0612-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A hypothesis that packing fraction alone can be used to characterize the structure of a sphere packing, known as the quasi-universality in the literature, is tested. The analysis, conducted in terms of coordination number, radial distribution function, and structural properties from the Voronoi/Delaunay tessellation, is based on the packing results generated under different conditions, covering a wide packing fraction range. The results showstrong similarities in these properties for a given packing fraction, indicating that although not generally valid, the quasi-universality approximately holds for the packing of spheres formed when the gravity is the driving force. The usefulness of this finding is also demonstrated through representative examples.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Micromechanical simulation and analysis of one-dimensional vibratory sphere packing [J].
An, XZ ;
Yang, RY ;
Dong, KJ ;
Zou, RP ;
Yu, AB .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[2]   Structural and entropic insights into the nature of the random-close-packing limit [J].
Anikeenko, A. V. ;
Medvedev, N. N. ;
Aste, T. .
PHYSICAL REVIEW E, 2008, 77 (03)
[3]   Emergence of Gamma distributions in granular materials and packing models [J].
Aste, T. ;
Di Matteo, T. .
PHYSICAL REVIEW E, 2008, 77 (02)
[4]   Variations around disordered close packing [J].
Aste, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (24) :S2361-S2390
[5]   GEOMETRICAL APPROACH TO THE STRUCTURE OF LIQUIDS [J].
BERNAL, JD .
NATURE, 1959, 183 (4655) :141-147
[6]  
Bideau D., 1993, DISORDER GRANULAR ME
[7]   Compaction of granular mixtures: a free volume model [J].
Boutreux, T ;
deGennes, PG .
PHYSICA A, 1997, 244 (1-4) :59-67
[8]   Evaluation of effective thermal conductivity from the structure of a packed bed [J].
Cheng, GJ ;
Yu, AB ;
Zulli, P .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (19) :4199-4209
[9]   STRUCTURAL-CHANGES ACCOMPANYING DENSIFICATION OF RANDOM HARD-SPHERE PACKINGS [J].
CLARKE, AS ;
JONSSON, H .
PHYSICAL REVIEW E, 1993, 47 (06) :3975-3984
[10]   Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings [J].
Delaney, Gary W. ;
Di Matteo, T. ;
Aste, Tomaso .
SOFT MATTER, 2010, 6 (13) :2992-3006