Random metric spaces and universality

被引:32
作者
Vershik, AA [1 ]
机构
[1] VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
关键词
D O I
10.1070/RM2004v059n02ABEH000718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of random metric space is defined, and it is proved that such a space is isometric to the Urysohn universal metric space with probability one. The main technique is the study of universal and random distance matrices, properties of metric (in particular, universal) spaces are related to properties of distance matrices. Examples of other categories in which randomness and universality coincide (graphs, and so on) are given.
引用
收藏
页码:259 / 295
页数:37
相关论文
共 42 条
[1]  
[Anonymous], 1925, CR HEBD ACAD SCI
[2]   ON THE EXTREME RAYS OF THE METRIC CONE [J].
AVIS, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (01) :126-144
[3]  
BANACH S, 2001, THEORY LINEAR OPERAT
[4]  
BHATTACHARJEE M, 2003, LOCALLY FINITE DENSE
[5]   Compact homogeneity of Uryson's universal metric space [J].
Bogatyi, SA .
RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (02) :332-333
[6]   Spectral properties of distance matrices [J].
Bogomolny, E ;
Bohigas, O ;
Schmit, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3595-3616
[7]  
Bollobas B, 1985, RANDOM GRAPHS
[8]  
BURRIS S, 2001, NUMBER THEORETICAL D
[9]  
Cameron PJ, 1997, ALGORITHMS COMB, V14, P333
[10]   A LOGICAL APPROACH TO ASYMPTOTIC COMBINATORICS .1. 1ST ORDER PROPERTIES [J].
COMPTON, KJ .
ADVANCES IN MATHEMATICS, 1987, 65 (01) :65-96