Epigenetics drive the evolution of sex chromosomes in animals and plants

被引:18
|
作者
Muyle, Aline [1 ]
Bachtrog, Doris [2 ]
Marais, Gabriel A. B. [3 ,4 ]
Turner, James M. A. [5 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
[2] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[3] Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, UMR 5558, F-69622 Villeurbanne, France
[4] Univ Lisbon, LEAF Linking Landscape Environm Agr & Food, Inst Super Agron, Lisbon, Portugal
[5] Francis Crick Inst, London, England
基金
英国惠康基金; 英国医学研究理事会; 欧洲研究理事会;
关键词
meiotic sex chromosome inactivation; Y degeneration; Y toxicity; X chromosome inactivation; X upregulation; imprinting; MAMMALIAN X-CHROMOSOME; DOSAGE-COMPENSATION MECHANISM; Y-CHROMOSOME; TRANSPOSABLE ELEMENTS; UP-REGULATION; CONVERGENT EVOLUTION; GENE-EXPRESSION; LINKED GENES; RNA-SEQ; INACTIVATION;
D O I
10.1098/rstb.2020.0124
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Epigenetics and Evolution
    Mendizabal, I.
    Keller, T. E.
    Zeng, J.
    Yi, Soojin V.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2014, 54 (01) : 31 - 42
  • [42] Sex, epilepsy, and epigenetics
    Qureshi, Irfan A.
    Mehler, Mark F.
    NEUROBIOLOGY OF DISEASE, 2014, 72 : 210 - 216
  • [43] Molecular mechanisms of adaptive evolution in wild animals and plants
    Yibo Hu
    Xiaoping Wang
    Yongchao Xu
    Hui Yang
    Zeyu Tong
    Ran Tian
    Shaohua Xu
    Li Yu
    Yalong Guo
    Peng Shi
    Shuangquan Huang
    Guang Yang
    Suhua Shi
    Fuwen Wei
    Science China Life Sciences, 2023, 66 : 453 - 495
  • [44] The genomics of plant sex chromosomes
    Vyskot, Boris
    Hobza, Roman
    PLANT SCIENCE, 2015, 236 : 126 - 135
  • [45] Sex chromosomes and cardiovascular disease
    Spiering, Anna E.
    Groenheide, Phebe J.
    Mokry, Michal
    Onland-Moret, N. Charlotte
    Civelek, Mete
    Reue, Karen
    Benavente, Ernest Diez
    den Ruijter, Hester M.
    EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2025,
  • [46] Centromere Epigenetics in Plants
    Birchler, James A.
    Han, Fangpu
    JOURNAL OF GENETICS AND GENOMICS, 2013, 40 (05) : 201 - 204
  • [47] Sex-chrom, a database on plant sex chromosomes
    Barankova, Simona
    Pascual-Diaz, Joan Pere
    Sultana, Nusrat
    Alonso-Lifante, Maria Pilar
    Balant, Manica
    Barros, Karina
    D'Ambrosio, Ugo
    Malinska, Hana
    Peska, Vratislav
    Perez Lorenzo, Ivan
    Kovarik, Ales
    Vyskot, Boris
    Janousek, Bohuslav
    Garcia, Sonia
    NEW PHYTOLOGIST, 2020, 227 (06) : 1594 - 1604
  • [48] Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells
    Werner, Rachael J.
    Schultz, Bryant M.
    Huhn, Jacklyn M.
    Jelinek, Jaroslav
    Madzo, Jozef
    Engel, Nora
    BIOLOGY OF SEX DIFFERENCES, 2017, 8
  • [49] Sexually Antagonistic Zygotic Drive: A New Form of Genetic Conflict between the Sex Chromosomes
    Friberg, Urban
    Rice, William R.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2015, 7 (03):
  • [50] Chromosomes, Conflict, and Epigenetics: Chromosomal Speciation Revisited
    Brown, Judith D.
    O'Neill, Rachel J.
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 11, 2010, 11 : 291 - 316