Epigenetics drive the evolution of sex chromosomes in animals and plants

被引:18
|
作者
Muyle, Aline [1 ]
Bachtrog, Doris [2 ]
Marais, Gabriel A. B. [3 ,4 ]
Turner, James M. A. [5 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
[2] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[3] Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, UMR 5558, F-69622 Villeurbanne, France
[4] Univ Lisbon, LEAF Linking Landscape Environm Agr & Food, Inst Super Agron, Lisbon, Portugal
[5] Francis Crick Inst, London, England
基金
英国惠康基金; 英国医学研究理事会; 欧洲研究理事会;
关键词
meiotic sex chromosome inactivation; Y degeneration; Y toxicity; X chromosome inactivation; X upregulation; imprinting; MAMMALIAN X-CHROMOSOME; DOSAGE-COMPENSATION MECHANISM; Y-CHROMOSOME; TRANSPOSABLE ELEMENTS; UP-REGULATION; CONVERGENT EVOLUTION; GENE-EXPRESSION; LINKED GENES; RNA-SEQ; INACTIVATION;
D O I
10.1098/rstb.2020.0124
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
引用
收藏
页数:15
相关论文
共 50 条
  • [31] The evolution of sex chromosome dosage compensation in animals
    Chen, Jiabi
    Wang, Menghan
    He, Xionglei
    Yang, Jian-Rong
    Chen, Xiaoshu
    JOURNAL OF GENETICS AND GENOMICS, 2020, 47 (11) : 681 - 693
  • [32] The evolution of sex chromosomes in organisms with separate haploid sexes
    Immler, Simone
    Otto, Sarah Perin
    EVOLUTION, 2015, 69 (03) : 694 - 708
  • [33] Evolution of the canonical sex chromosomes of the guppy and its relatives
    Kirkpatrick, Mark
    Sardell, Jason M.
    Pinto, Brendan J.
    Dixon, Groves
    Peichel, Catherine L.
    Schartl, Manfred
    G3-GENES GENOMES GENETICS, 2022, 12 (02):
  • [34] Transposable elements and early evolution of sex chromosomes in fish
    Domitille Chalopin
    Jean-Nicolas Volff
    Delphine Galiana
    Jennifer L. Anderson
    Manfred Schartl
    Chromosome Research, 2015, 23 : 545 - 560
  • [35] Matrisibs, Patrisibs, and the Evolution of Imprinting on Autosomes and Sex Chromosomes
    Brandvain, Yaniv
    AMERICAN NATURALIST, 2010, 176 (04) : 511 - 521
  • [36] Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain
    Cabrera Zapata, Lucas E.
    Miguel Garcia-Segura, Luis
    Julia Cambiasso, Maria
    Angeles Arevalo, Maria
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)
  • [37] The (r)evolution of SINE versus LINE distributions in primate genomes: Sex chromosomes are important
    Kvikstad, Erika M.
    Makova, Kateryna D.
    GENOME RESEARCH, 2010, 20 (05) : 600 - 613
  • [38] Meiotic dynamics in a unique Australian marsupial provide new insights into the evolution of neo-sex chromosomes in the early stages of differentiation
    Marin-Gual, Laia
    Hogg, Carolyn J.
    Chang, J. King
    Pask, Andrew J.
    Renfree, Marilyn B.
    Waters, Paul D.
    Ruiz-Herrera, Aurora
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2025, 13
  • [39] Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species
    Setti, Princia Grejo
    Deon, Geize Aparecida
    dos Santos, Rodrigo Zeni
    Goes, Caio Augusto Gomes
    Garnero, Analia Del Valle
    Gunski, Ricardo Jose
    de Oliveira, Edivaldo Herculano Correa
    Porto-Foresti, Fabio
    de Freitas, Thales Renato Ochotorena
    Silva, Fabio Augusto Oliveira
    Liehr, Thomas
    Utsunomia, Ricardo
    Kretschmer, Rafael
    Cioffi, Marcelo de Bello
    BMC ECOLOGY AND EVOLUTION, 2024, 24 (01):
  • [40] Molecular mechanisms of adaptive evolution in wild animals and plants
    Hu, Yibo
    Wang, Xiaoping
    Xu, Yongchao
    Yang, Hui
    Tong, Zeyu
    Tian, Ran
    Xu, Shaohua
    Yu, Li
    Guo, Yalong
    Shi, Peng
    Huang, Shuangquan
    Yang, Guang
    Shi, Suhua
    Wei, Fuwen
    SCIENCE CHINA-LIFE SCIENCES, 2023, 66 (03) : 453 - 495