Symbolic heuristic search for factored Markov decision processes

被引:0
作者
Feng, ZZ [1 ]
Hansen, EA [1 ]
机构
[1] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
来源
EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a planning algorithm that integrates two approaches to solving Markov decision processes with large state spaces. State abstraction is used to avoid evaluating states individually. Forward search from a start state, guided by an admissible heuristic, is used to avoid evaluating all states. We combine these two approaches in a novel way that exploits symbolic model-checking techniques and demonstrates their usefulness for decision-theoretic planning.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 12 条
[1]   LEARNING TO ACT USING REAL-TIME DYNAMIC-PROGRAMMING [J].
BARTO, AG ;
BRADTKE, SJ ;
SINGH, SP .
ARTIFICIAL INTELLIGENCE, 1995, 72 (1-2) :81-138
[2]  
BERTOLI P, 2001, P 17 INT JOINT C ART, P467
[3]  
Boutilier C., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P24
[4]  
Cimatti A, 1998, FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, P875
[5]  
DANIELE M, 1999, P 5 EUR C PLANN
[6]   PLANNING UNDER TIME CONSTRAINTS IN STOCHASTIC DOMAINS [J].
DEAN, T ;
KAELBLING, LP ;
KIRMAN, J ;
NICHOLSON, A .
ARTIFICIAL INTELLIGENCE, 1995, 76 (1-2) :35-74
[7]   Abstraction and approximate decision-theoretic planning [J].
Dearden, R ;
Boutilier, C .
ARTIFICIAL INTELLIGENCE, 1997, 89 (1-2) :219-283
[8]  
EDELKAMP S, 1998, GERM C ART INT KI, P81
[9]   LAO*: A heuristic search algorithm that finds solutions with loops [J].
Hansen, EA ;
Zilberstein, S .
ARTIFICIAL INTELLIGENCE, 2001, 129 (1-2) :35-62
[10]  
Hoey J, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P279