A posteriori error analysis of mixed finite element methods for stress-assisted diffusion problems

被引:0
作者
Gatica, Gabriel N. [1 ,2 ]
Gomez-Vargas, Bryan [1 ,2 ,3 ]
Ruiz-Baier, Ricardo [4 ,5 ,6 ]
机构
[1] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[3] Univ Costa Rica, Sede Occidente, Secc Matemat, San Ramon, Costa Rica
[4] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
[5] Sechenov Univ, Inst Comp Sci & Math Modeling, Moscow, Russia
[6] Univ Adventista Chile, Casilla 7-D, Chillan, Chile
关键词
Linear elasticity; Stress-assisted diffusion; Mixed-primal formulation; Fully-mixed formulation; Finite element methods; A posteriori error analysis; LINEAR ELASTICITY; FORMULATION; ESTIMATORS; APPROXIMATION;
D O I
10.1016/j.cam.2022.114144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the a posteriori error analysis for mixed-primal and fully-mixed finite element methods approximating the stress-assisted diffusion of solutes in elastic materials. The systems are formulated in terms of stress, rotation and displacements for the elasticity equations, whereas the nonlinear diffusion is cast using either solute concentration (leading to a four-field mixed-primal formulation), or the triplet concentration - concentration gradient - and nonlinear diffusive flux (yielding the six-field fully-mixed variational formulation). We have addressed the well-posedness of these formulations in two recent works, also introducing discretisations based on PEERS or Arnold-Falk-Winther elements for the linear elasticity and either Lagrange, or Lagrange - Raviart-Thomas - Lagrange triplets for the approximation of the diffusion equation. Here we advocate the derivation of two efficient and reliable residual-based a posteriori error estimators focusing on the two-dimensional case. The proofs of reliability depend on adequately formulated inf-sup conditions in combination with a Helmholtz decomposition, and they also rely on the local approximation features of Clement and Raviart-Thomas interpolations. The efficiency of the estimators results from classical inverse and discrete trace inequalities together with localisation techniques based on edge-and triangle-bubble functions. The theoretical properties of these error indicators are confirmed through numerical tests, also serving to illustrate the performance of the adaptive mesh refinement. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 40 条
  • [1] Agmon S., 1965, LECT ELLIPTIC BOUNDA
  • [2] ON THE PROBLEM OF DIFFUSION IN SOLIDS
    AIFANTIS, EC
    [J]. ACTA MECHANICA, 1980, 37 (3-4) : 265 - 296
  • [3] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88
  • [4] Error estimators for a mixed method
    Alonso, A
    [J]. NUMERISCHE MATHEMATIK, 1996, 74 (04) : 385 - 395
  • [5] A posteriori error analysis of a fully-mixed formulation for the Brinkman-Darcy problem
    Alvarez, M.
    Gatica, G. N.
    Ruiz-Baier, R.
    [J]. CALCOLO, 2017, 54 (04) : 1491 - 1519
  • [6] A posteriori error estimation for an augmented mixed-primal method applied to sedimentation-consolidation systems
    Alvarez, Mario
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 367 : 322 - 346
  • [7] A POSTERIORI ERROR ANALYSIS FOR A VISCOUS FLOW-TRANSPORT PROBLEM
    Alvarez, Mario
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1789 - 1816
  • [8] Arnold D. N., 1984, JAPAN J APPL MATH, V1, P347, DOI [10.1007/bf03167064, DOI 10.1007/BF03167064]
  • [9] Mixed finite element methods for linear elasticity with weakly imposed symmetry
    Arnold, Douglas N.
    Falk, Richard S.
    Winther, Ragnar
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (260) : 1699 - 1723
  • [10] A RESIDUAL-BASED A POSTERIORI ERROR ESTIMATOR FOR THE STOKES-DARCY COUPLED PROBLEM
    Babuska, Ivo
    Gatica, Gabriel N.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 498 - 523