Statistical analysis of the global geodesic function for 3D object classification

被引:0
|
作者
Aouada, Djamila [1 ]
Feng, Shuo [1 ]
Krim, Hamid [1 ]
机构
[1] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS | 2007年
关键词
object classification; geodesic; jensen-shannon divergence; feature extraction;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a novel classification strategy for 3D objects. Our technique is based on using a Global Geodesic Function to intrinsically describe the surface of an object. The choice of the Global Geodesic Function ensures the invariance of the classification procedure to scaling and all isometric transformations. Using the Jensen-Shannon Divergence, feature parameters are extracted from the probability distribution functions of the Global Geodesic Function for each one of the classes. These parameters are used in the decision of a class membership of an object. This approach demonstrates low computational cost, efficiency, and robustness to resolution over many different data sets.
引用
收藏
页码:645 / 648
页数:4
相关论文
共 50 条
  • [1] 3D ResNets for 3D Object Classification
    Ioannidou, Anastasia
    Chatzilari, Elisavet
    Nikolopoulos, Spiros
    Kompatsiaris, Ioannis
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 495 - 506
  • [2] Deep learning with geodesic moments for 3D shape classification
    Luciano, Lorenzo
    Ben Hamza, A.
    PATTERN RECOGNITION LETTERS, 2018, 105 : 182 - 190
  • [3] Learning function-based object classification from 3D imagery
    Pechuk, Michael
    Soldea, Octavian
    Rivlin, Ehud
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (02) : 173 - 191
  • [4] Optimized PointNet for 3D Object Classification
    Li, Zhuangzhuang
    Li, Wenmei
    Liu, Haiyan
    Wang, Yu
    Gui, Guan
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2019, PT I, 2019, 301 : 271 - 278
  • [5] MIMO SVMs for 3D object classification
    Arana-Daniel, Nancy
    Bayro-Corrochano, Eduardo
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1628 - +
  • [6] SCurV: A 3D descriptor for object classification
    Rodriguez-Sanchez, Antonio J.
    Szedmak, Sandor
    Piater, Justus
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 1320 - 1327
  • [7] 3D geodesic shape spectrum descriptor (SFG3D) for object retrieval
    Chaieb, Faten
    Gadacha, Wieme
    Ghorbel, Faouzi
    TRAITEMENT DU SIGNAL, 2014, 31 (3-4) : 279 - 291
  • [8] 3D classification of through-the-wall radar images using statistical object models
    Mobasseri, Bijan G.
    Rosenbaum, Zachary
    2008 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS & INTERPRETATION, 2008, : 149 - 152
  • [9] Geometric Modeling of Rigid and Non-rigid 3D Shapes Using the Global Geodesic Function
    Aouada, Djamila
    Dreisigmeyer, David W.
    Krim, Hamid
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 935 - +
  • [10] Statistical mesh distributions for 3D object topology
    Qasaimeh, Malik
    Zhang, Ying
    Thrinissi, Khaled
    Ben Hamza, A.
    2007 9TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1-3, 2007, : 61 - 64