Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm

被引:116
作者
Long, Wen [1 ,2 ]
Wu, Tiebin [3 ]
Xu, Ming [2 ]
Tang, Mingzhu [4 ]
Cai, Shaohong [1 ]
机构
[1] Guizhou Univ Finance & Econ, Key Lab Econ Syst Simulat, Guiyang 550025, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[3] Hunan Univ Humanities Sci & Technol, Dept Energy & Elect Engn, Loudi 417000, Peoples R China
[4] Changsha Univ Sci & Technol, Sch Energy Power & Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Butterfly optimization algorithm; Photovoltaic models; Parameter identification; Global optimization; GREY WOLF OPTIMIZER; SOLAR-CELL MODELS; GLOBAL OPTIMIZATION; MODULES PARAMETERS; DIODE MODEL; PV CELLS; EXTRACTION; SEARCH;
D O I
10.1016/j.energy.2021.120750
中图分类号
O414.1 [热力学];
学科分类号
摘要
Establishing accurate and reliable models based on the measured data for photo-voltaic (PV) modules are significant to design, control and evaluate the PV systems. Although many meta-heuristic algorithms have been proposed in the literature, achieving reliable, accurate and quick parameters identification for PV models is still a challenge. This paper develops a variant of butterfly optimization algorithm (called EABOA) to identify the unknown parameters of PV models. In EABOA, a new position search equation and good-point set are proposed to balance between exploration and exploitation. 12 classical benchmark test problems are firstly selected for verifying the effectiveness of EABOA, and the results indicate that EABOA provides better performance than other selected algorithms. Then, EABOA is applied to identify the unknown parameters of three benchmark test PV models, i.e., single diode (SD), double diode (DD) and PV module models. The comparison results with some other reported parameter identification methods from literature suggest that the proposed EABOA outperforms most approaches in terms of accuracy and reliability. The least SIAE value of EABOA is smaller than other compared algorithms about 56.6%, 5.84%, and 10.2% for SD, DD, and PV module models, respectively. Finally, EABOA is applied to solve parameter identification problem of practical module and obtains the satisfactory results. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 69 条
[1]   An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models [J].
Abbassi, Rabeh ;
Abbassi, Abdelkader ;
Heidari, Ali Asghar ;
Mirjalili, Seyedali .
ENERGY CONVERSION AND MANAGEMENT, 2019, 179 :362-372
[2]   An improved Opposition-Based Sine Cosine Algorithm for global optimization [J].
Abd Elaziz, Mohamed ;
Oliva, Diego ;
Xiong, Shengwu .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 90 :484-500
[3]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[4]   Parameter extraction of photovoltaic generating units using multi-verse optimizer [J].
Ali, E. E. ;
El-Hameed, M. A. ;
El-Fergany, A. A. ;
El-Arini, M. M. .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2016, 17 :68-76
[5]   Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm [J].
Allam, Dalia ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 123 :535-548
[6]   A new estimation approach for determining the I-V characteristics of solar cells [J].
AlRashidi, M. R. ;
AlHajri, M. F. ;
El-Naggar, K. M. ;
Al-Othman, A. K. .
SOLAR ENERGY, 2011, 85 (07) :1543-1550
[7]   Butterfly optimization algorithm: a novel approach for global optimization [J].
Arora, Sankalap ;
Singh, Satvir .
SOFT COMPUTING, 2019, 23 (03) :715-734
[8]   Binary butterfly optimization approaches for feature selection [J].
Arora, Sankalap ;
Anand, Priyanka .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 :147-160
[9]   Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach [J].
Askarzadeh, Alireza ;
Coelho, Leandro dos Santos .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :608-614
[10]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949