Effect of Endothelial Cells on Angiogenic Properties of Multipotent Stromal Cells from the Umbilical Cord during Angiogenesis Modeling in the Basement Membrane Matrix

被引:6
作者
Arutyunyan, I. V. [1 ,2 ]
Fatkhudinov, T. H. [1 ,2 ,3 ]
El'chaninov, A. V. [1 ,2 ,3 ]
Makarov, A. V. [1 ,2 ,3 ]
Kananykhina, E. Yu. [1 ,2 ]
Usman, N. Yu. [1 ,2 ,3 ]
Raimova, E. Sh. [3 ]
Goldshtein, D. V. [4 ]
Bol'shakova, G. B. [2 ]
机构
[1] Minist Hlth Russian Federat, VI Kulakov Res Ctr Obstet Gynecol & Perinatol, Moscow, Russia
[2] Russian Acad Med Sci, Human Morphol Res Inst, Moscow 109801, Russia
[3] NI Pirogov Russian Natl Res Med Univ, Minist Hlth Russian Federat, Moscow, Russia
[4] Russian Acad Med Sci, Med Genet Res Ctr, Moscow 109801, Russia
关键词
in vitro angiogenesis; basement membrane matrix; Matrigel; endothelial cells; multipotent stromal cells of umbilical cord; MESENCHYMAL STEM-CELLS; DIFFERENTIATION; GROWTH;
D O I
10.1007/s10517-016-3221-9
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Short-term cell culturing on basement membrane matrix is a common and very convenient in vitro model of angiogenesis. We studied the possibility of interaction of multipotent stromal cells from the umbilical cord and Ea.hy926 endothelial cells on this model at the early and late periods of the experiment. Multipotent stromal cells alone and in combination with endothelial cells formed an unstable tubular network. Clusters formed after its disassembling later became the sprouting centers in co-culture of the two cell types, but not in pure culture of multipotent stromal cells. Multipotent stromal cells with CD31+ phenotype constitute the structural basis of newly formed stable 3D capillary-like network. Prolongation of the time of culturing and combination of the two in vitro models of angiogenesis (tubulogenesis and sprouting) allowed more complete assessment of the angiogenic potential of multipotent stromal cells.
引用
收藏
页码:575 / 582
页数:8
相关论文
共 21 条
[1]   Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells -: A gene therapy approach [J].
Albini, A ;
Marchisone, C ;
Del Grosso, F ;
Benelli, R ;
Masiello, L ;
Tacchetti, C ;
Bono, M ;
Ferrantini, M ;
Rozera, C ;
Truini, M ;
Belardelli, F ;
Santi, L ;
Noonan, DM .
AMERICAN JOURNAL OF PATHOLOGY, 2000, 156 (04) :1381-1393
[2]   Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation [J].
Annabi, B ;
Lee, YT ;
Turcotte, S ;
Naud, E ;
Desrosiers, RR ;
Champagne, M ;
Eliopoulos, N ;
Galipeau, J ;
Béliveau, R .
STEM CELLS, 2003, 21 (03) :337-347
[3]   The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art [J].
Arnaoutova, Irina ;
George, Jay ;
Kleinman, Hynda K. ;
Benton, Gabriel .
ANGIOGENESIS, 2009, 12 (03) :267-274
[4]   Not All MSCs Can Act as Pericytes: Functional In Vitro Assays to Distinguish Pericytes from Other Mesenchymal Stem Cells in Angiogenesis [J].
Blocki, Anna ;
Wang, Yingting ;
Koch, Maria ;
Peh, Priscilla ;
Beyer, Sebastian ;
Law, Ping ;
Hui, James ;
Raghunath, Michael .
STEM CELLS AND DEVELOPMENT, 2013, 22 (17) :2347-2355
[5]   Endothelium in vitro: A review of human vascular endothelial cell lines for blood vessel-related research [J].
Bouïs D. ;
Hospers G.A.P. ;
Meijer C. ;
Molema G. ;
Mulder N.H. .
Angiogenesis, 2001, 4 (2) :91-102
[6]   Factors Secreted by Mesenchymal Stem Cells and Endothelial Progenitor Cells Have Complementary Effects on Angiogenesis In Vitro [J].
Burlacu, Alexandrina ;
Grigorescu, Gabriela ;
Rosca, Ana-Maria ;
Preda, Mihai Bogdan ;
Simionescu, Maya .
STEM CELLS AND DEVELOPMENT, 2013, 22 (04) :643-653
[7]   Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells [J].
Chen, Ming-Yan ;
Lie, Pu-Chang ;
Li, Zhi-Ling ;
Wei, Xing .
EXPERIMENTAL HEMATOLOGY, 2009, 37 (05) :629-640
[8]   Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels [J].
Choi, Moran ;
Lee, Hyun-Sun ;
Naidansaren, Purevjargal ;
Kim, Hyun-Kyung ;
Eunju, O. ;
Cha, Jung-Ho ;
Ahn, Hyun-Young ;
Yang, Park In ;
Shin, Jong-Chul ;
Joe, Young Ae .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2013, 45 (03) :560-570
[9]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317
[10]   Secretome From Mesenchymal Stem Cells Induces Angiogenesis Via Cyr61 [J].
Estrada, Rosendo ;
Li, Na ;
Sarojini, Harshini ;
An, Jin ;
Lee, Menq-Jer ;
Wang, Eugenia .
JOURNAL OF CELLULAR PHYSIOLOGY, 2009, 219 (03) :563-571