Automated Socket Anomaly Detection through Deep Learning

被引:1
|
作者
Agrawal, Nidhi [1 ]
Yang, Min-Jian [1 ]
Xanthopoulos, Constantinos [2 ]
Thangamariappan, Vijayakumar [1 ]
Xiao, Joe [3 ]
Ho, Chee-Wah [4 ]
Schaub, Keith [2 ]
Leventhal, Ira [1 ]
机构
[1] Advantest Amer Inc, San Jose, CA 95134 USA
[2] Advantest Amer Inc, Austin, TX USA
[3] Essai Inc, Advantest Grp, Fremont, CA USA
[4] Essai Inc, Advantest Grp, Phoenix, AZ USA
关键词
D O I
10.1109/ITC44778.2020.9325269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Automated Anomaly Detection in Histology Images using Deep Learning
    Shelton, Lillie
    Soans, Rajath
    Shah, Tosha
    Forest, Thomas
    Janardhan, Kyathanahalli
    Napolitano, Michael
    Gonzalez, Raymond
    Carlson, Grady
    Shah, Jyoti K.
    Chen, Antong
    DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [2] Road Anomaly Detection Through Deep Learning Approaches
    Luo, Dawei
    Lu, Jianbo
    Guo, Gang
    IEEE ACCESS, 2020, 8 : 117390 - 117404
  • [3] Deep Learning for Anomaly Detection
    Pang, Guansong
    Aggarwal, Charu
    Shen, Chunhua
    Sebe, Nicu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2282 - 2286
  • [4] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896
  • [5] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Chang, Yen-Jung
    Gong, Xinwei
    Wang, Tie
    Yang, Yang
    Long, Bo
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3569 - 3570
  • [6] A Deep Learning Framework for Automated Anomaly Detection and Localization in Fused Filament Fabrication
    Avro, Sakib S.
    Rahman, S. M. Atikur
    Tseng, Tzu-Liang
    Rahman, Md Fashiar
    MANUFACTURING LETTERS, 2024, 41 : 1526 - 1534
  • [7] Anomaly Detection on Web-User Behaviors Through Deep Learning
    Gui, Jiaping
    Chen, Zhengzhang
    Yu, Xiao
    Lumezanu, Cristian
    Chen, Haifeng
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS (SECURECOMM 2020), PT I, 2020, 335 : 467 - 473
  • [8] Anomaly Detection of actual IoT traffic flows through Deep Learning
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    Pecori, Riccardo
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1736 - 1741
  • [9] Deep Active Learning for Anomaly Detection
    Pimentel, Tiago
    Monteiro, Marianne
    Veloso, Adriano
    Ziviani, Nivio
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [10] Deep Learning for Anomaly Detection: A Review
    Pang, Guansong
    Shen, Chunhua
    Cao, Longbing
    Van den Hengel, Anton
    ACM COMPUTING SURVEYS, 2021, 54 (02)