On data dependence of stability domains, exponential stability and stability radii for implicit linear dynamic equations

被引:4
作者
Nguyen Thu Ha [1 ]
Nguyen Huu Du [2 ]
Do Duc Thuan [3 ]
机构
[1] Elect Power Univ, Dept Basic Sci, 235 Hoang Quoc Viet Str, Hanoi, Vietnam
[2] Vietnam Natl Univ, Dept Math Mech & Informat, 334 Nguyen Trai Str, Hanoi, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet Str, Hanoi, Vietnam
关键词
Implicit dynamic equations; Time scales; Convergence; Stability domain; Spectrum; Exponential stability; Stability radius; DIFFERENTIAL-ALGEBRAIC EQUATIONS; CONSTANT-COEFFICIENTS; ROBUST STABILITY; TIME SCALES; SYSTEMS; STABILIZABILITY;
D O I
10.1007/s00498-016-0164-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We shall deal with some problems concerning the stability domains, the spectrum of matrix pairs, the exponential stability and its robustness measure for linear implicit dynamic equations of arbitrary index. First, some characterizations of the stability domains corresponding to a convergent sequence of time scales are derived. Then, we investigate how the spectrum of matrix pairs, the exponential stability and the stability radii for implicit dynamic equations depend on the equation data when the structured perturbations act on both the coefficient of derivative and the right-hand side.
引用
收藏
页数:28
相关论文
共 36 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
[Anonymous], 1989, SINGULAR CONTROL SYS, DOI DOI 10.1007/BFB0002475
[3]  
[Anonymous], 1988, Ein Ma kettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten
[4]   THE TOPOLOGY OF THE RHO-HAUSDORFF DISTANCE [J].
ATTOUCH, H ;
LUCCHETTI, R ;
WETS, RJB .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 160 :303-320
[5]   Linear positive control systems on time scales; controllability [J].
Bartosiewicz, Zbigniew .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2013, 25 (03) :327-343
[6]   On stabilisability of nonlinear systems on time scales [J].
Bartosiewicz, Zbigniew ;
Piotrowska, Ewa .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (01) :139-145
[7]   Robustness of stability of time-varying index-1 DAEs [J].
Berger, Thomas .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2014, 26 (03) :403-433
[8]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[9]  
Bracke M., 2000, THESIS
[10]  
Brenan K.E., 1996, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations