The KO-valued spectral flow for skew-adjoint Fredholm operators

被引:6
作者
Bourne, Chris [1 ,2 ]
Carey, Alan L. [3 ,4 ]
Lesch, Matthias [5 ]
Rennie, Adam [4 ]
机构
[1] Tohoku Univ, WPI Adv Inst Mat Res WPI AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] RIKEN, iTHEMS, Wako, Saitama 3510198, Japan
[3] Australian Natl Univ, Math Sci Inst, Kingsley St, Canberra, ACT 0200, Australia
[4] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
[5] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
基金
澳大利亚研究理事会;
关键词
Fredholm index; spectral flow; Clifford algebra; K- and KK-theory; DIRAC-TYPE OPERATORS; SYMMETRY CLASSES; INDEX; PAIRINGS;
D O I
10.1142/S1793525320500557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a comprehensive treatment of a "Clifford module flow" along paths in the skew-adjoint Fredholm operators on a real Hilbert space that takes values in KO* (R) via the Clifford index of Atiyah-Bott-Shapiro. We develop its properties for both bounded and unbounded skew-adjoint operators including an axiomatic characterization. Our constructions and approach are motivated by the principle that spectral flow = Fredholm index. That is, we show how the KO-valued spectral flow relates to a KO-valued index by proving a Robbin-Salamon type result. The Kasparov product is also used to establish a spectral flow = Fredholm index result at the level of bivariant K-theory. We explain how our results incorporate previous applications of Z/2Z-valued spectral flow in the study of topological phases of matter.
引用
收藏
页码:505 / 556
页数:52
相关论文
共 46 条
[1]   Bulk-Boundary Correspondence for Disordered Free-Fermion Topological Phases [J].
Alldridge, Alexander ;
Max, Christopher ;
Zirnbauer, Martin R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (03) :1761-1821
[2]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[3]  
[Anonymous], 1969, PUBL MATH I HAUT ETU, DOI DOI 10.1007/BF02684885
[4]  
[Anonymous], 1989, Spin geometry
[5]  
Atiyah M.F., 1964, Topology, V3, P3, DOI DOI 10.1016/0040-9383(64)90003-5
[6]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[7]   K-THEORY AND REALITY [J].
ATIYAH, MF .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (68) :367-&
[8]   THE INDEX OF A PAIR OF PROJECTIONS [J].
AVRON, J ;
SEILER, R ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 120 (01) :220-237
[9]   CHARGE DEFICIENCY, CHARGE-TRANSPORT AND COMPARISON OF DIMENSIONS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) :399-422
[10]   SPECTRAL FLOW, INDEX AND THE SIGNATURE OPERATOR [J].
Azzali, Sara ;
Wahl, Charlotte .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2011, 3 (01) :37-67