Topological states in two-dimensional optical lattices

被引:121
作者
Stanescu, Tudor D. [1 ,2 ,3 ]
Galitski, Victor [1 ,2 ]
Das Sarma, S. [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[3] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 01期
关键词
QUANTIZED HALL CONDUCTANCE; SINGLE ATOMS; QUANTUM; INSULATOR; MODEL; PHASE; FIELD; GAP;
D O I
10.1103/PhysRevA.82.013608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a general analysis of two-dimensional optical lattice models that give rise to topologically nontrivial insulating states. We identify the main ingredients of the lattice models that are responsible for the nontrivial topological character and argue that such states can be realized within a large family of realistic optical lattice Hamiltonians with cold atoms. We focus our quantitative analysis on the properties of topological states with broken time-reversal symmetry specific to cold-atom settings. In particular, we analyze finite-size effects, multiorbital phenomena that give rise to a variety of distinct topological states and transitions between them, the dependence on the trap geometry, and, most importantly, the behavior of the edge states for different types of soft and hard boundaries. Furthermore, we demonstrate the possibility of experimentally detecting the topological states through light Bragg scattering of the edge and bulk states.
引用
收藏
页数:26
相关论文
共 81 条
[31]  
Landau L., 1937, Phys. Z. Sowjetunion, V11, P26
[32]  
LAUGHLIN RB, 1981, PHYS REV B, V23, P5632, DOI 10.1103/PhysRevB.23.5632
[33]   Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential [J].
Lin, Y. -J. ;
Compton, R. L. ;
Perry, A. R. ;
Phillips, W. D. ;
Porto, J. V. ;
Spielman, I. B. .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[34]   Spin-switch effect from crossed Andreev reflection in superconducting graphene spin valves [J].
Linder, Jacob ;
Zareyan, Malek ;
Sudbo, Asle .
PHYSICAL REVIEW B, 2009, 80 (01)
[35]   Oscillatory crossover from two-dimensional to three-dimensional topological insulators [J].
Liu, Chao-Xing ;
Zhang, HaiJun ;
Yan, Binghai ;
Qi, Xiao-Liang ;
Frauenheim, Thomas ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW B, 2010, 81 (04)
[36]   Quantum anomalous Hall effect with cold atoms trapped in a square lattice [J].
Liu, Xiong-Jun ;
Liu, Xin ;
Wu, Congjun ;
Sinova, Jairo .
PHYSICAL REVIEW A, 2010, 81 (03)
[37]   Massive Dirac fermions and spin physics in an ultrathin film of topological insulator [J].
Lu, Hai-Zhou ;
Shan, Wen-Yu ;
Yao, Wang ;
Niu, Qian ;
Shen, Shun-Qing .
PHYSICAL REVIEW B, 2010, 81 (11)
[38]   Quantum dimer model on the kagome lattice: Solvable dimer-liquid and Ising gauge theory [J].
Misguich, G ;
Serban, D ;
Pasquier, V .
PHYSICAL REVIEW LETTERS, 2002, 89 (13)
[39]   Resonating valence bond phase in the triangular lattice quantum dimer model [J].
Moessner, R ;
Sondhi, SL .
PHYSICAL REVIEW LETTERS, 2001, 86 (09) :1881-1884
[40]   Topological invariants of time-reversal-invariant band structures [J].
Moore, J. E. ;
Balents, L. .
PHYSICAL REVIEW B, 2007, 75 (12)