Combustor turbine interface studies - Part 1: Endwall effectiveness measurements

被引:69
作者
Colban, WF [1 ]
Thole, KA
Zess, G
机构
[1] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Pratt & Whitney, E Hartford, CT 06108 USA
来源
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME | 2003年 / 125卷 / 02期
关键词
D O I
10.1115/1.1561811
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Improved durability of gas turbine engines is an objective for both military and commercial aeroengines as well as for power generation engines. One region susceptible to degradation in an engine is the junction between the combustor and first vane given that the main gas path temperatures at this location are the highest. The platform at this junction is quite complex in that secondary flow effects, such as the leading edge vortex, are dominant. Past computational studies have shown that the total pressure profile exiting the combustor dictates the development of the secondary flows that are formed. This study examines the effect of varying the combustor liner film-cooling and junction slot flows on the adiabatic wall temperatures measured on the platform of the first vane. The experiments were performed using large-scale models of a combustor and nozzle guide vane in a wind tunnel facility. The results show that varying the coolant injection from the upstream combustor liner leads to differing total pressure profiles entering the turbine vane passage. Endwall adiabatic effectiveness measurements indicate that the coolant does not exit the upstream combustor slot uniformly, but instead accumulates along the suction side of the vane and endwall. Increasing the liner cooling continued to reduce endwall temperatures, which was not found to be true with increasing the film-cooling from the liner.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 14 条
[1]  
BARRINGER MD, 2001, IN PRESS J TURBOMACH
[2]  
BLAIR MF, 1974, ASME, V96, P524
[3]  
BURD SW, 2000GT199 ASME
[4]  
BURD SW, 2000GT199
[5]  
GRANSER D, 1990, 90GT95
[6]   Film-cooled turbine endwall in a transonic flow field: Part I - Aerodynamic measurements [J].
Kost, F ;
Nicklas, M .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2001, 123 (04) :709-719
[7]   CROSSFLOWS IN A TURBINE CASCADE PASSAGE [J].
LANGSTON, LS .
JOURNAL OF ENGINEERING FOR POWER-TRANSACTIONS OF THE ASME, 1980, 102 (04) :866-874
[8]   DESCRIBING THE UNCERTAINTIES IN EXPERIMENTAL RESULTS [J].
MOFFAT, RJ .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1988, 1 (01) :3-17
[9]   Film-cooled turbine endwall in a transonic flow field: Part II - Heat transfer and film-cooling effectiveness [J].
Nicklas, M .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2001, 123 (04) :720-729
[10]  
OKE R, 2000GT140