On the multidimensional stochastic equation Yn+1 = AnYn+Bn

被引:16
作者
de Saporta, B
Guivarc'h, Y
Le Page, E
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Univ Bretagne Sud, Ctr Yves Coppens, F-56017 Vannes, France
关键词
D O I
10.1016/j.crma.2004.07.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior at infinity of the tail of the stationary solution of a multidimensional linear auto-regressive process with random coefficients. We exhibit an extended class of multiplicative coefficients satisfying a condition of irreducibility and proximality that yield to a heavy tail behavior.
引用
收藏
页码:499 / 502
页数:4
相关论文
共 11 条
[1]   THE STOCHASTIC EQUATION YN+1=ANYN+BN WITH STATIONARY COEFFICIENTS [J].
BRANDT, A .
ADVANCES IN APPLIED PROBABILITY, 1986, 18 (01) :211-220
[2]  
Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [DOI 10.2307/1993589, 10.1090/s0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1]
[3]  
Furstenberg H, 1973, P S PURE MATH, VXXVI, P193
[4]  
GOLDIE CM, 1991, ANN APPL PROBAB, V1, P26
[5]   Zariski closure and the dimension of the Gaussian law of the product of random matrices .1. [J].
Goldsheid, IY ;
Guivarch, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 105 (01) :109-142
[6]  
Guivarc'h Y, 2004, RANDOM WALKS AND GEOMETRY, P181
[7]  
Guivarc'h Y., 1986, Contemp._Math, V50, P31
[8]  
GUIVARSHEID IY, 2004, PROBAB THEORY REL, P181
[9]   RANDOM DIFFERENCE EQUATIONS AND RENEWAL THEORY FOR PRODUCTS OF RANDOM MATRICES [J].
KESTEN, H .
ACTA MATHEMATICA, 1973, 131 (3-4) :207-248
[10]   RENEWAL THEORY FOR FUNCTIONALS OF A MARKOV-CHAIN WITH GENERAL STATE SPACE [J].
KESTEN, H .
ANNALS OF PROBABILITY, 1974, 2 (03) :355-386