Quantitative -omic data empowers bottom-up systems biology

被引:24
作者
Yurkovich, James T. [1 ,2 ]
Palsson, Bernhard O. [1 ,2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
关键词
RED-BLOOD-CELLS; TIME-COURSE METABOLOMICS; GENOME-SCALE MODELS; MASS-SPECTROMETRY; ADDITIVE SOLUTION-3; LIPIDOMICS REVEALS; ROUTINE STORAGE; HUMAN PLASMA; METABOLISM; PROTEOME;
D O I
10.1016/j.copbio.2018.01.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The large-scale generation of '-omic' data holds the potential to increase and deepen our understanding of biological phenomena, but the ability to synthesize information and extract knowledge from these data sets still represents a significant challenge. Bottom-up systems biology overcomes this hurdle through the integration of disparate -omic data types, and absolutely quantified experimental measurements allow for direct integration into quantitative, mechanistic models. The human red blood cell has served as a starting point for the application of systems biology approaches and has been the focus of a recent burst of generated quantitative metabolomics and proteomics data. Thus, the red blood cell represents the perfect case study through which to examine our ability to glean knowledge from the integration of multiple disparate data types.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 82 条
[1]   Changes in Red Blood Cell membrane lipid composition: A new perspective into the pathogenesis of PKAN [J].
Aoun, Manar ;
Corsetto, Paola Antonia ;
Nugue, Guillaume ;
Montorfano, Gigliola ;
Ciusani, Emilio ;
Crouzier, David ;
Hogarth, Penelope ;
Gregory, Allison ;
Hayflick, Susan ;
Zorzi, Giovanna ;
Rizzo, Angela Maria ;
Tiranti, Valeria .
MOLECULAR GENETICS AND METABOLISM, 2017, 121 (02) :180-189
[2]   Statistical methods for the analysis of high-throughput metabolomics data [J].
Bartel, Joerg ;
Krumsiek, Jan ;
Theis, Fabian J. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2013, 4 (05)
[3]   Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose [J].
Bergdahl, Basti ;
Heer, Dominik ;
Sauer, Uwe ;
Hahn-Hagerdal, Barbel ;
van Niel, Ed W. J. .
BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
[4]  
Bordbar A., 2012, FUNCTIONAL COHERENCE, P201
[5]   Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics [J].
Bordbar, Aarash ;
Yurkovich, James T. ;
Paglia, Giuseppe ;
Rolfsson, Ottar ;
Sigurjonsson, Olafur E. ;
Palsson, Bernhard O. .
SCIENTIFIC REPORTS, 2017, 7
[6]   Interpreting the deluge of omics data: new approaches offer new possibilities [J].
Bordbar, Aarash .
BLOOD TRANSFUSION, 2017, 15 (02) :189-190
[7]   Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes [J].
Bordbar, Aarash ;
Johansson, Par I. ;
Paglia, Giuseppe ;
Harrison, Scott J. ;
Wichuk, Kristine ;
Magnusdottir, Manuela ;
Valgeirsdottir, Soley ;
Gybel-Brask, Mikkel ;
Ostrowski, Sisse R. ;
Palsson, Sirus ;
Rolfsson, Ottar ;
Sigurjonsson, Olafur E. ;
Hansen, Morten B. ;
Gudmundsson, Sveinn ;
Palsson, Bernhard O. .
TRANSFUSION, 2016, 56 (04) :852-862
[8]   Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics [J].
Bordbar, Aarash ;
McCloskey, Douglas ;
Zielinski, Daniel C. ;
Sonnenschein, Nikolaus ;
Jamshidi, Neema ;
Palsson, Bernhard O. .
CELL SYSTEMS, 2015, 1 (04) :283-292
[9]   iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states [J].
Bordbar, Aarash ;
Jamshidi, Neema ;
Palsson, Bernhard O. .
BMC SYSTEMS BIOLOGY, 2011, 5
[10]   The Proteome of the Red Blood Cell: An Auspicious Source of New Insights into Membrane-Centered Regulation of Homeostasis [J].
Bosman, Giel J. C. G. M. .
PROTEOMES, 2016, 4 (04)