Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system

被引:24
作者
Castelnovo, Claudio
Chamon, Claudio
Mudry, Christopher
Pujol, Pierre
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
[3] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon 07, France
基金
美国国家科学基金会;
关键词
quantum dimer model; quantum criticality; Kosterlitz-Thouless transition; conformal field theory; Stochastic matrix form decomposition;
D O I
10.1016/j.aop.2006.04.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:903 / 934
页数:32
相关论文
共 61 条
[51]   SUPERCONDUCTIVITY AND THE QUANTUM HARD-CORE DIMER GAS [J].
ROKHSAR, DS ;
KIVELSON, SA .
PHYSICAL REVIEW LETTERS, 1988, 61 (20) :2376-2379
[52]  
SANDVIK AW, CONDMAT0507277
[53]   Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm [J].
Senthil, T ;
Balents, L ;
Sachdev, S ;
Vishwanath, A ;
Fisher, MPA .
PHYSICAL REVIEW B, 2004, 70 (14) :144407-1
[54]   No sliding in time [J].
Shtengel, K ;
Nayak, C ;
Bishara, W ;
Chamon, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (36) :L589-L595
[55]   Continuous-time diffusion Monte Carlo method applied to the quantum dimer model -: art. no. 020401 [J].
Syljuåsen, OF .
PHYSICAL REVIEW B, 2005, 71 (02)
[56]   CONWAY TILING GROUPS [J].
THURSTON, WP .
AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (08) :757-773
[57]  
1963, J MATH PHYS, V4, P278
[58]  
2003, PHYS REV B, V67
[59]  
2005, INT J MOD PHYS B, V19, P1973
[60]  
1963, J MATH PHYS, V4, P287