Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review

被引:48
作者
Duffney, Lara J. [1 ,2 ]
Valdez, Purnima [1 ]
Tremblay, Martine W. [3 ]
Cao, Xinyu [1 ]
Montgomery, Sarah [1 ]
McConkie-Rosell, Allyn [1 ]
Jiang, Yong-hui [1 ,2 ,3 ]
机构
[1] Duke Univ, Dept Pediat, Sch Med, Div Med Genet, Durham, NC 27710 USA
[2] Duke Univ, Sch Med, Dept Neurobiol, Durham, NC 27710 USA
[3] Duke Univ, Sch Med, Program Genet & Genom, Durham, NC 27710 USA
关键词
behavior characterization; epigenetic machinery; neurodevelopment; whole exome sequencing; CHROMATIN-STRUCTURE; IN-VIVO; INTELLECTUAL DISABILITY; MOUSE DEVELOPMENT; METHYL-CPG; DNA; SUBTYPES; BINDING; TRANSLATION; MECP2;
D O I
10.1002/ajmg.b.32631
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3 end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development.
引用
收藏
页码:426 / 433
页数:8
相关论文
共 34 条
[1]   SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs) [J].
Abrahams, Brett S. ;
Arking, Dan E. ;
Campbell, Daniel B. ;
Mefford, Heather C. ;
Morrow, Eric M. ;
Weiss, Lauren A. ;
Menashe, Idan ;
Wadkins, Tim ;
Banerjee-Basu, Sharmila ;
Packer, Alan .
MOLECULAR AUTISM, 2013, 4
[2]   Mammalian linker-histone subtypes differentially affect gene expression in vivo [J].
Alami, R ;
Fan, YH ;
Pack, S ;
Sonbuchner, TM ;
Besse, A ;
Lin, QC ;
Greally, JM ;
Skouitchi, AL ;
Bouhassira, EE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5920-5925
[3]   ROLES OF H-1 DOMAINS IN DETERMINING HIGHER-ORDER CHROMATIN STRUCTURE AND H-1 LOCATION [J].
ALLAN, J ;
MITCHELL, T ;
HARBORNE, N ;
BOHM, L ;
CRANEROBINSON, C .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 187 (04) :591-601
[4]   The molecular hallmarks of epigenetic control [J].
Allis, C. David ;
Jenuwein, Thomas .
NATURE REVIEWS GENETICS, 2016, 17 (08) :487-500
[5]   Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 [J].
Amir, RE ;
Van den Veyver, IB ;
Wan, M ;
Tran, CQ ;
Francke, U ;
Zoghbi, HY .
NATURE GENETICS, 1999, 23 (02) :185-188
[6]  
Janzen William P, 2010, Drug Discov Today Technol, V7, pe59, DOI 10.1016/j.ddtec.2010.07.004
[7]   AutDB: a gene reference resource for autism research [J].
Basu, Saumyendra N. ;
Kollu, Ravi ;
Banerjee-Basu, Sharmila .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D832-D836
[8]   Histone H1 and the dynamic regulation of chromatin function [J].
Brown, DT .
BIOCHEMISTRY AND CELL BIOLOGY, 2003, 81 (03) :221-227
[9]   The dynamics of histone H1 function in chromatin [J].
Bustin, M ;
Catez, F ;
Lim, JH .
MOLECULAR CELL, 2005, 17 (05) :617-620
[10]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+