Moderate deviations for stabilizing functionals in geometric probability

被引:20
|
作者
Eichelsbacher, P. [1 ]
Raic, M. [2 ,3 ]
Schreiber, T. [4 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44801 Bochum, Germany
[2] Univ Ljubljana, FMF, SI-1000 Ljubljana, Slovenia
[3] Univ Primorska, FAMNIT, SI-1000 Ljubljana, Slovenia
[4] Nicholas Copernicus Univ, Fac Math & Comp Sci, Torun, Poland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 01期
关键词
Stabilizing functionals; Moderate deviations; Explicit bounds; Cumulants; Random packing; Random graphs; CENTRAL LIMIT-THEOREMS; GAUSSIAN LIMITS; LARGE NUMBERS; PACKING; LAWS;
D O I
10.1214/13-AIHP576
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of the present paper is to establish explicit upper and lower bounds on moderate deviation probabilities for a rather general class of geometric functionals enjoying the stabilization property, under Poisson input and the assumption of a certain control over the growth of the moments of the functional and its radius of stabilization. Our proof techniques rely on cumulant expansions and cluster measures. In addition, we establish a new criterion for the limiting variance to be non-degenerate. Moreover, our main result provides a new central limit theorem, which, though stated under strong moment assumptions, does not require bounded support of the intensity of the Poisson input. We apply our results to three groups of examples: random packing models, geometric functionals based on Euclidean nearest neighbors and the sphere of influence graphs.
引用
收藏
页码:89 / 128
页数:40
相关论文
共 50 条