Moderate deviations for stabilizing functionals in geometric probability

被引:20
|
作者
Eichelsbacher, P. [1 ]
Raic, M. [2 ,3 ]
Schreiber, T. [4 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44801 Bochum, Germany
[2] Univ Ljubljana, FMF, SI-1000 Ljubljana, Slovenia
[3] Univ Primorska, FAMNIT, SI-1000 Ljubljana, Slovenia
[4] Nicholas Copernicus Univ, Fac Math & Comp Sci, Torun, Poland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 01期
关键词
Stabilizing functionals; Moderate deviations; Explicit bounds; Cumulants; Random packing; Random graphs; CENTRAL LIMIT-THEOREMS; GAUSSIAN LIMITS; LARGE NUMBERS; PACKING; LAWS;
D O I
10.1214/13-AIHP576
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of the present paper is to establish explicit upper and lower bounds on moderate deviation probabilities for a rather general class of geometric functionals enjoying the stabilization property, under Poisson input and the assumption of a certain control over the growth of the moments of the functional and its radius of stabilization. Our proof techniques rely on cumulant expansions and cluster measures. In addition, we establish a new criterion for the limiting variance to be non-degenerate. Moreover, our main result provides a new central limit theorem, which, though stated under strong moment assumptions, does not require bounded support of the intensity of the Poisson input. We apply our results to three groups of examples: random packing models, geometric functionals based on Euclidean nearest neighbors and the sphere of influence graphs.
引用
收藏
页码:89 / 128
页数:40
相关论文
共 50 条
  • [1] PROCESS LEVEL MODERATE DEVIATIONS FOR STABILIZING FUNCTIONALS
    Eichelsbacher, Peter
    Schreiber, Tomasz
    ESAIM-PROBABILITY AND STATISTICS, 2010, 14 : 1 - 15
  • [2] Moderate deviations for some point measures in geometric probability
    Baryshnikov, Yu
    Eichelsbacher, P.
    Schreiber, T.
    Yukich, J. E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (03): : 422 - 446
  • [3] NORMAL APPROXIMATION FOR STABILIZING FUNCTIONALS
    Lachieze-Rey, Raphael
    Schulte, Matthias
    Yukich, J. E.
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (02) : 931 - 993
  • [4] Lower large deviations for geometric functionals
    Hirsch, Christian
    Jahnel, Benedikt
    Tobias, Andras
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 12
  • [6] Limit theorems for geometric functionals of Gibbs point processes
    Schreiber, T.
    Yukich, J. E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (04): : 1158 - 1182
  • [7] Moderate Deviations via Cumulants
    Hanna Döring
    Peter Eichelsbacher
    Journal of Theoretical Probability, 2013, 26 : 360 - 385
  • [8] Moderate Deviations via Cumulants
    Doering, Hanna
    Eichelsbacher, Peter
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (02) : 360 - 385
  • [9] Moderate deviations on Poisson chaos
    Schulte, Matthias
    Thaele, Christoph
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [10] Deviation inequalities for quadratic Wiener functionals and moderate deviations for parameter estimators
    Gao FuQing
    Jiang Hui
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) : 1181 - 1196