Deep Denoising Sparse Coding

被引:0
作者
Wang, Yijie [1 ]
Yang, Bo [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian, Peoples R China
[2] Xian Polytech Univ, Sch Comp Sci, Xian, Peoples R China
来源
2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI) | 2020年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
deep learning; clustering; sparse coding; RNA-SEQ; SINGLE;
D O I
10.1109/ICTAI50040.2020.00109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell Ribonucleic Acid sequencing (scRNA-seq) has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. In fact, scRNA-seq data contain an abundance of dropout events that lead to zero expression measurements. These dropout events may be the result of technical sampling effects or real biology arising from stochastic transcriptional activity. Therefore clustering analysis of scRNA-seq data remains a statistical and computational challenge. Here, we have developed Deep-Denoising Sparse Coding (DDSC), a deep clustering method combine autoencoder and sparse coding approach. Based on six real datasets from five representative single-cell sequencing platforms, DDSC outperformed some state-of-the-art methods under various clustering performance metrics and exhibited improved scalability. Its accuracy and efficiency make DDSC a promising algorithm for clustering large-scale scRNA-seq data.
引用
收藏
页码:681 / 685
页数:5
相关论文
共 31 条
[1]  
Angerer Philipp, 2017, Current Opinion in Systems Biology, V4, P85, DOI 10.1016/j.coisb.2017.07.004
[2]  
[Anonymous], 2015, Adaptive Control Processes-A Guided Tour
[3]   DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data [J].
Arisdakessian, Cedric ;
Poirion, Olivier ;
Yunits, Breck ;
Zhu, Xun ;
Garmire, Lana X. .
GENOME BIOLOGY, 2019, 20 (01)
[4]   Comprehensive single-cell transcriptional profiling of a multicellular organism [J].
Cao, Junyue ;
Packer, Jonathan S. ;
Ramani, Vijay ;
Cusanovich, Darren A. ;
Huynh, Chau ;
Daza, Riza ;
Qiu, Xiaojie ;
Lee, Choli ;
Furlan, Scott N. ;
Steemers, Frank J. ;
Adey, Andrew ;
Waterston, Robert H. ;
Trapnell, Cole ;
Shendure, Jay .
SCIENCE, 2017, 357 (6352) :661-667
[5]  
Deng Y., 2018, MASSIVE SINGLE CELL, P315556
[6]   Interpretable dimensionality reduction of single cell transcriptome data with deep generative models [J].
Ding, Jiarui ;
Condon, Anne ;
Shah, Sohrab P. .
NATURE COMMUNICATIONS, 2018, 9
[7]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Mapping the Mouse Cell Atlas by Microwell-Seq [J].
Han, Xiaoping ;
Wang, Renying ;
Zhou, Yincong ;
Fei, Lijiang ;
Sun, Huiyu ;
Lai, Shujing ;
Saadatpour, Assieh ;
Zhou, Zimin ;
Chen, Haide ;
Ye, Fang ;
Huang, Daosheng ;
Xu, Yang ;
Huang, Wentao ;
Jiang, Mengmeng ;
Jiang, Xinyi ;
Mao, Jie ;
Chen, Yao ;
Lu, Chenyu ;
Xie, Jin ;
Fang, Qun ;
Wang, Yibin ;
Yue, Rui ;
Li, Tiefeng ;
Huang, He ;
Orkin, Stuart H. ;
Yuan, Guo-Cheng ;
Chen, Ming ;
Guo, Guoji .
CELL, 2018, 172 (05) :1091-+
[9]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218
[10]  
Kiselev VY, 2017, NAT METHODS, V14, P483, DOI [10.1038/nmeth.4236, 10.1038/NMETH.4236]