Dixmier traces and some applications in non-commutative geometry

被引:32
作者
Carey, A. L. [1 ]
Sukochev, F. A.
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT, Australia
[2] Flinders Univ S Australia, Sch Informat & Engn, Adelaide, SA 5001, Australia
关键词
D O I
10.1070/RM2006v061n06ABEH004369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a discussion of recent progress in the theory of singular traces on ideals of compact operators, with emphasis on Dixmier traces and their applications in non-commutative geometry. The starting point is the book Non-commutative geometry by Alain Connes, which contains several open problems and motivations for their solutions. A distinctive feature of the exposition is a treatment of operator ideals in general semifinite von Neumann algebras. Although many of the results presented here have already appeared in the literature, new and improved proofs are given in some cases. The reader is referred to the table of contents below for an overview of the topics considered.
引用
收藏
页码:1039 / 1099
页数:61
相关论文
共 80 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]   Singular traces and compact operators [J].
Albeverio, S ;
Guido, D ;
Ponosov, A ;
Scarlatti, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (02) :281-302
[3]  
Albeverio S., 1993, BIELEFELD ENCOUNT MA, VVIII, P1
[4]  
Albeverio S., 1995, MATH APPL, P3
[5]  
[Anonymous], J OPERATOR THEORY
[6]  
[Anonymous], 1990, INTERFACE MATH PARTI
[7]  
[Anonymous], SOVIET MATH DOKL
[8]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[9]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[10]   A Lidskii type formula for Dixmier traces [J].
Azamov, NA ;
Sukochev, FA .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (02) :107-112