Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks

被引:280
|
作者
Dong, JR [1 ]
Kaufmann, RK
Myneni, RB
Tucker, CJ
Kauppi, PE
Liski, J
Buermann, W
Alexeyev, V
Hughes, MK
机构
[1] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA
[2] Boston Univ, Dept Geog, Boston, MA 02215 USA
[3] Univ Helsinki, Dept Limnol & Environm Protect, FIN-00014 Helsinki, Finland
[4] European Forest Inst, FIN-80100 Joensuu, Finland
[5] Univ Helsinki, Dept Forest Ecol, FIN-00014 Helsinki, Finland
[6] St Petersburg Forest Ecol Ctr, St Petersburg 194021, Russia
[7] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
关键词
forest biomass pools; sources and sinks; Kyoto Protocol; remote sensing; NDVI; forest inventory;
D O I
10.1016/S0034-4257(02)00130-X
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The relation between satellite measurements of the normalized difference vegetation index (NDVI), cumulated over the growing season, and inventory estimates of forest woody biomass carbon is estimated statistically with data from 167 provinces and states in six countries (Canada, Finland, Norway, Russia and the USA for a single time period and Sweden for two periods). Statistical tests indicate that the regression model can be used to represent the relation between forest biomass and NDVI across spatial, temporal and ecological scales for relatively long time scales. For the 1.42 billion ha of boreal and temperate forests in the Northern Hemisphere, the woody biomass carbon pools and sinks are estimated at a relatively high spatial resolution (8 x 8 km). We estimate the carbon pool to be 61 +/- 20 gigatons (10(9)) carbon (Gt C) during the late 1990s and the biomass sink to be 0.68 +/- 0.34 Gt C/year between the 1982 and 1999. The geographic detail of carbon sinks provided here can contribute to a potential monitoring program for greenhouse gas emission reduction commitments under the Kyoto Protocol. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 50 条
  • [31] Remote Sensing and Mapping of Fine Woody Carbon With Satellite Imagery and Super Learner
    Shaik, Riyaaz Uddien
    Alipour, Mohamad
    Rowell, Eric
    Watts, Adam
    Woodall, Christopher
    Taciroglu, Ertugrul
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [32] Estimates of current status of forest types in Kolli Hill using remote sensing
    Jayakumar S.
    Arockiasamy D.I.
    John Britto S.
    Journal of the Indian Society of Remote Sensing, 2000, 28 (2-3) : 141 - 151
  • [33] Spatial Vertical Distribution Rule Analysis of Forest Biomass Based on Remote Sensing
    Yang, Jinling
    Cao, Xiange
    Fan, Wenyi
    Li, Mingze
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 9 (ICCSIT 2010), 2010, : 593 - 595
  • [34] Optimization Model to Estimate Mount Tai Forest Biomass Based on Remote Sensing
    Diao, Yanfang
    Zhang, Chengming
    Liu, Jiping
    Liang, Yong
    Hou, Xuelian
    Gong, Xiaomin
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE V, PT III, 2012, 370 : 453 - +
  • [35] Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data
    Naik, Parth
    Dalponte, Michele
    Bruzzone, Lorenzo
    REMOTE SENSING, 2021, 13 (07)
  • [36] Unveiling spatial variations of high forest live biomass carbon stocks of Gabon using advanced remote sensing techniques
    Sagang, Le Bienfaiteur Takougoum
    Favrichon, Samuel
    Dalagnol, Ricardo
    Ordway, Elsa M.
    Medjibe, Vincent
    Manfoumbi, Francis
    Obame, Conan
    Wagner, Fabien
    George-Chacon, Stephanie
    White, Lee
    Saatchi, Sassan
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (07):
  • [37] Predicting bird species richness using remote sensing in boreal agricultural-forest mosaics
    Luoto, M
    Virkkala, R
    Heikkinen, RK
    Rainio, K
    ECOLOGICAL APPLICATIONS, 2004, 14 (06) : 1946 - 1962
  • [38] Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery
    Wu, Chaoyang
    Chen, Jing M.
    Desai, Ankur R.
    Hollinger, David Y.
    Arain, M. Altaf
    Margolis, Hank A.
    Gough, Christopher M.
    Staebler, Ralf M.
    REMOTE SENSING OF ENVIRONMENT, 2012, 118 : 60 - 72
  • [39] Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review
    Chu, Thuan
    Guo, Xulin
    REMOTE SENSING, 2014, 6 (01) : 470 - 520
  • [40] Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory
    Roedig, Edna
    Cuntz, Matthias
    Heinke, Jens
    Rammig, Anja
    Huth, Andreas
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2017, 26 (11): : 1292 - 1302