A computational study of the microstructural effect on the deformation and fracture of friction stir welded aluminum

被引:25
作者
Balokhonov, R. R. [1 ,2 ]
Romanova, V. A. [1 ]
Martynov, S. A. [1 ]
Zinoviev, A. V. [1 ]
Zinovieva, O. S. [1 ]
Batukhtina, E. E. [1 ]
机构
[1] Inst Strength Phys & Mat Sci, Tomsk 634055, Russia
[2] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia
关键词
Numerical simulation; Microstructure-based models; Polycrystals; Plastic strain localization; Fracture; Friction stir welding; MECHANICAL-PROPERTIES; NUMERICAL-SIMULATION; MATERIAL FLOW; LOCALIZATION; GENERATION; EVOLUTION; MAGNESIUM; STRAIN; GROWTH; MODEL;
D O I
10.1016/j.commatsci.2015.10.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A computational analysis of the microstructural effect on the deformation and fracture of friction stir welded aluminum is performed. A dynamic boundary-value problem using a plane strain approximation is solved numerically by the finite difference method. The calculations take an explicit account of experimental polycrystalline microstructures typical for different weld zones, like the base material, weld nugget, and thermo-mechanically affected zones. The mechanical response of individual grains is simulated within an elastic-plastic formulation of the problem with isotropic strain hardening. A fracture model allowing for crack generation and propagation in maximum equivalent plastic strain regions is used. It is shown that the localization of plastic strain and the strength of aluminum in different weld zones are determined by the microstructure of the material on the advancing side of the weld. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 10
页数:9
相关论文
共 29 条
[1]   Influences of pin profile on the mechanical and microstructural behaviors in dissimilar friction stir welded AA6082-AA7075 butt Joint [J].
Aval, Hamed Jamshidi .
MATERIALS & DESIGN, 2015, 67 :413-421
[2]  
Babichev A.P., 1991, Physical Values. Reference Book
[3]   A mesomechanical analysis of plastic strain and fracture localization in a material with a bilayer coating [J].
Balokhonov, R. R. ;
Romanova, V. A. ;
Schmauder, S. ;
Martynov, S. A. ;
Kovalevskaya, Zh. G. .
COMPOSITES PART B-ENGINEERING, 2014, 66 :276-286
[4]   Simulation of deformation and fracture of coated material with account for propagation of a Luders-Chernov band in the steel substrate [J].
Balokhonov, R. R. ;
Romanova, V. A. ;
Martynov, S. A. ;
Schwab, E. A. .
PHYSICAL MESOMECHANICS, 2013, 16 (02) :133-140
[5]   A multiscale methodology for deformation modeling applied to friction stir welded steel [J].
Boyce, D. E. ;
Dawson, P. R. ;
Sidle, B. ;
Gnaupel-Herold, T. .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 38 (01) :158-175
[6]   Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy [J].
Chen, Gao-qiang ;
Shi, Qing-yu ;
Li, Yu-jia ;
Sun, Yan-jun ;
Dai, Qi-lei ;
Jia, Jin-yao ;
Zhu, Yu-can ;
Wu, Jian-jun .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 :540-546
[7]   Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel [J].
Cho, Hoon-Hwe ;
Hong, Sung-Tae ;
Roh, Jae-Hun ;
Choi, Hyun-Sik ;
Kang, Suk Hoon ;
Steel, Russell J. ;
Han, Heung Nam .
ACTA MATERIALIA, 2013, 61 (07) :2649-2661
[8]   Numerical-experimental crack growth analysis in AA2024-T3 FSWed butt joints [J].
Citarella, Roberto ;
Carlone, Pierpaolo ;
Lepore, Marcello ;
Palazzo, Gaetano S. .
ADVANCES IN ENGINEERING SOFTWARE, 2015, 80 :47-57
[9]   Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS [J].
Dumont, M. ;
Steuwer, A. ;
Deschamps, A. ;
Peel, M. ;
Withers, P. J. .
ACTA MATERIALIA, 2006, 54 (18) :4793-4801
[10]   Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds [J].
Fuller, Christian B. ;
Mahoney, Murray W. ;
Calabrese, Mike ;
Micona, Leanna .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (09) :2233-2240