Interspecies tunneling in one-dimensional Bose mixtures

被引:27
作者
Pflanzer, Anika C. [1 ]
Zoellner, Sascha [2 ]
Schmelcher, Peter [1 ,3 ]
机构
[1] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
[2] Niels Bohr Inst, Niels Bohr Int Acad, DK-2100 Copenhagen O, Denmark
[3] Heidelberg Univ, INF, D-69120 Heidelberg, Germany
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 02期
关键词
QUANTUM DYNAMICS; GAS; TRANSITION; SYSTEMS; BOSONS;
D O I
10.1103/PhysRevA.81.023612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the ground-state properties and quantum dynamics of few-boson mixtures with strong interspecies repulsion in one-dimensional traps. If one species localizes at the center, e. g., due to a very large mass compared to the other component, it represents an effective barrier for the latter, and the system can be mapped onto identical bosons in a double well. For weaker localization, the barrier atoms begin to respond to the light component, leading to an induced attraction between the mobile atoms that may even outweigh their bare intraspecies repulsion. To explain the resulting effects, we derive an effective Hubbard model for the lighter species accounting for the back action of the barrier in correction terms to the lattice parameters. Also the tunneling is drastically affected: by varying the degree of localization of the "barrier" atoms, the dynamics of intrinsically noninteracting bosons can change from Rabi oscillations to effective pair tunneling. For identical fermions (or fermionized bosons), this leads to the tunneling of attractively bound pairs.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Superfluidity, Bose-Einstein condensation, and structure in one-dimensional Luttinger liquids [J].
Markic, L. Vranjes ;
Vrcan, H. ;
Zuhrianda, Z. ;
Glyde, H. R. .
PHYSICAL REVIEW B, 2018, 97 (01)
[22]   Spin Dynamics and Andreev-Bashkin Effect in Mixtures of One-Dimensional Bose Gases [J].
Parisi, L. ;
Astrakharchik, G. E. ;
Giorgini, S. .
PHYSICAL REVIEW LETTERS, 2018, 121 (02)
[23]   Anomalous frequency shifts in a one-dimensional trapped Bose gas [J].
Valiente, M. ;
Pastukhov, V .
PHYSICAL REVIEW A, 2019, 99 (05)
[24]   Dynamic properties of the one-dimensional Bose-Hubbard model [J].
Ejima, S. ;
Fehske, H. ;
Gebhard, F. .
EPL, 2011, 93 (03)
[25]   Quantum criticality of a one-dimensional Bose-Fermi mixture [J].
Yin, Xiangguo ;
Guan, Xi-Wen ;
Zhang, Yunbo ;
Chen, Shu .
PHYSICAL REVIEW A, 2012, 85 (01)
[26]   Identifying diffusive length scales in one-dimensional Bose gases [J].
Moller, Frederik ;
Cataldini, Federica ;
Schmiedmayer, Jorg .
SCIPOST PHYSICS CORE, 2024, 7 (02)
[27]   Theory of superfluidity and drag force in the one-dimensional Bose gas [J].
Cherny, Alexander Yu ;
Caux, Jean-Sebastien ;
Brand, Joachim .
FRONTIERS OF PHYSICS, 2012, 7 (01) :54-71
[28]   One-dimensional Bose gas in optical lattices of arbitrary strength [J].
Astrakharchik, Grigory E. ;
Krutitsky, Konstantin V. ;
Lewenstein, Maciej ;
Mazzanti, Ferran .
PHYSICAL REVIEW A, 2016, 93 (02)
[29]   Reentrance and entanglement in the one-dimensional Bose-Hubbard model [J].
Pino, M. ;
Prior, J. ;
Somoza, A. M. ;
Jaksch, D. ;
Clark, S. R. .
PHYSICAL REVIEW A, 2012, 86 (02)
[30]   Impurity states in the one-dimensional Bose gas [J].
Pastukhov, Volodymyr .
PHYSICAL REVIEW A, 2017, 96 (04)