On the Aleksandrov problem in linear n-normed spaces

被引:41
作者
Chu, HY [1 ]
Lee, KH [1 ]
Park, CG [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
基金
新加坡国家研究基金会;
关键词
linear n-normed space; n-isometry; n-Lipschitz mapping;
D O I
10.1016/j.na.2004.07.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to generalize the Aleksandrov problem to the case of linear n-normed spaces. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1001 / 1011
页数:11
相关论文
共 9 条
[1]  
ALEKSANDROV A. D., 1970, SOV MATH DOKL, V11, P116
[2]  
CHO Y. J., 2001, Theory of 2-inner product spaces
[3]   The Aleksandrov problem in linear 2-normed spaces [J].
Chu, HY ;
Park, CG ;
Park, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :666-672
[4]   The Aleksandrov problem for unit distance preserving mapping [J].
Ma, YM .
ACTA MATHEMATICA SCIENTIA, 2000, 20 (03) :359-364
[5]   ON THE ALEKSANDROV PROBLEM OF CONSERVATIVE DISTANCES [J].
MIELNIK, B ;
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (04) :1115-1118
[6]   Properties of isometric mappings [J].
Rassias, TM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (01) :108-121
[7]   On the A. D. Aleksandrov problem of conservative distances and the Mazur-Ulam theorem [J].
Rassias, TM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) :2597-2608
[8]   ON THE MAZUR-ULAM THEOREM AND THE ALEKSANDROV PROBLEM FOR UNIT DISTANCE PRESERVING MAPPINGS [J].
RASSIAS, TM ;
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :919-925
[9]   Mappings of conservative distances and the Mazur-Ulam theorem [J].
Xiang, SH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (01) :262-274